

SSDPlayer Visualization Platform
Version 1.3.0 User’s Guide

Gala Yadgar, Roman Shor, Eitan Yaakobi, and Assaf Schuster
April 2021

Computer Science Department
Technion – Israel Institute of Technology

Haifa, Israel

Preface
SSDPlayer is an open source graphical tool for visualizing data layout and movement on storage devices. It is
designed to give a better understanding of how data gets from one place to another and why. Users define the
device they wish to examine, and the workload on which it operates. SSDPlayer then illustrates the device state
after each step in the workload. This illustration forms a “video” of the data movements that take place during
execution.

This guide explains how to download and execute SSDPlayer, how to define the devices and their features, and
how to collect and format the input workload for SSDPlayer. It also provides details on the device-management
options currently supported by SSDPlayer.

Document History

Version Date Description Development Authors
1.0 19 Jun. 2015 Initial version Roman Shor Gala Yadgar

1.1 Feb. 2016 Addition of RAID support Or Mauda

Roman Shor
Or Mauda
Gala Yadgar

1.2 Jun. 2016 Addition of Zoom levels and
breakpoints

Dolev Hadar
Roee Matza
Roman Shor

Dolev Hadar
Roee Matza
Gala Yadgar

1.2.0 Feb 2017 Addition of Info screen and error
messages, bug fixes

Roee Matza
Roman Shor

Roee Matza
Gala Yadgar

1.2.1 May 2017 Addition of wear-awareness block
allocation, bug fixes

Roman Shor Roman Shor
Gala Yadgar

1.3.0 April 2021 Addition of CLI, speedup, absolute GC
threshold, hot/cold write amplification
info

Lior Zelikman Lior Zelikman
Gala Yadgar

Table of Contents
Preface ..1

Document History...2

Introduction ..7

1.1. What Is SSDPlayer? ...7

1.2. What SSDPlayer Is Not ..7

2. Flash Terms and Concepts ..8

2.1. Flash Elements: Cells, Pages, and Blocks ..8

2.2. Flash Operations: Read, Write, and Erase ..8

2.3. Flash Translation Layer (FTL) ..8

2.4. Garbage Collection ...9

3. SSDPlayer Components ... 10

3.1. SSD ... 10

3.1.1. Physical Device .. 10

3.1.2. Manager .. 10

3.2. Input Workload .. 10

3.2.1. Workload Generators .. 11

3.2.2. Input Trace Files... 11

4. Downloading and Installing SSDPlayer .. 15

4.1. System Requirements .. 15

4.2. Downloading SSDPlayer... 15

4.3. Installing SSDPlayer ... 15

5. Running SSDPlayer in default (GUI) mode ... 16

5.1. Start SSDPlayer .. 16

5.2. Choose Manager .. 16

5.3. Choose Input Workload ... 17

5.3.1. Choose Workload Generator ... 17

5.3.2. Choose Input Trace File ... 18

5.4. Start the Simulation ... 20

5.4.1. Play .. 20

5.4.2. Next Frame .. 20

5.5. Stopping the Simulation .. 21

5.5.1. Pause ... 21

5.5.2. Stop .. 21

5.6. Highlight Stripes (RAID Managers) .. 22

5.6.1. Open the Stripes Info Window .. 22

5.6.2. Show another stripe .. 22

5.6.2.1. Specify a stripe to highlight ... 22

5.6.2.1.1. Specify a physical page .. 23

5.6.2.1.2. Specify a logical page ... 23

5.6.2.1.3. Specify a parity page .. 23

5.6.3. Remove stripe .. 24

5.7. Manage breakpoints .. 24

5.7.1. Defining Breakpoints ... 24

5.7.1.1. Add a new breakpoint ... 25

5.7.1.2. Enable/Disable breakpoint .. 26

5.7.1.3. Edit an existing breakpoint .. 27

5.7.1.4. Remove an existing breakpoint ... 27

5.7.2. Breakpoint Hits .. 28

5.8. Zoom in and out .. 29

5.8.1. Choosing a zoom level ... 29

5.8.2. Detailed zoom level ... 30

5.8.3. Pages zoom level ... 30

5.8.4. Blocks zoom level... 30

5.8.4.1. Valid count ... 30

5.8.4.2. Erase count .. 31

5.8.4.3. Average temperature .. 31

5.8.4.4. Average write level .. 31

5.8.4.5. RAID parity ... 31

5.8.5. Small Blocks zoom level ... 32

5.9. View Information ... 32

5.9.1. Open the information screen .. 32

5.9.2. Saving the simulation state ... 33

5.10. Speedup with sampling rate .. 33

5.10.1. Open the sampling rate screen ... 33

5.10.2. Set the sampling rate ... 33

6. Running SSDPlayer in CLI mode ... 34

6.1. Command line parameters .. 34

6.1.1. -C <config file name> ... 34

6.1.2. -M <manager name> ... 34

6.1.3. -F <trace file name> ... 34

6.1.4. -G (use workload generator) ... 34

6.1.4.1. Required parameters ... 34

6.1.4.2. Optional parameters ... 34

6.1.5. -O <output file name> ... 34

6.1.6. -help ... 35

6.2. Examples .. 35

6.3. Error messages .. 35

7. Understanding the SSDPlayer Display ... 36

7.1. Physical Device Display .. 36

7.2. Histograms ... 37

7.2.1. Write Amplification ... 37

7.2.2. Writes Per Erase .. 37

7.2.3. Valid Histogram ... 38

7.2.4. HotCold Write Amplification (HotCold Manager) ... 38

7.2.5. Partition Distribution (HotCold Manager) ... 39

7.2.6. Write Level Distribution (Reusable Manager) ... 39

7.2.7. Block State Distribution (Reusable Manager) ... 39

7.2.8. Valid 1 and Valid 2 Histograms (Reusable Manager) .. 40

7.2.9. Parity Update Overhead Histogram (RAID Managers) .. 40

7.3. Stripe Highlighting (RAID Managers) ... 40

7.4. Information Screen .. 41

8. Editing the Configuration File .. 43

8.1. Physical Parameters .. 43

8.2. Visual Parameters .. 44

Manager Parameters ... 46

8.2.1. Defining Colors .. 46

8.2.2. Parameters In Common for All Managers ... 46

8.2.3. Greedy Manager .. 47

8.2.4. HotCold Manager .. 47

Reusable Manager ... 48

8.2.5. HotCold-Reusable Manager .. 48

8.2.6. Reusable visualization Manager .. 48

8.2.7. Parameters In Common for All RAID Managers .. 49

7.3.9 RAID Visualization Manager .. 49

9. Editing the breakpoints configuration file ... 50

10. Supported Managers ... 51

10.1. Greedy Manager .. 51

10.2. HotCold Manager .. 51

10.3. Reusable Manager ... 52

10.4. HotCold-Reusable Manager .. 53

10.5. RAID Managers .. 54

10.5.1. RAID 1 Manager ... 54

8.5.2. RAID 5 Manager ... 54

10.5.2. RAID 6 Manager ... 54

10.6. Reusable visualization Manager .. 55

10.7. RAID Visualization Manager .. 55

A. FAQ .. 56

a. Q: I double click on SSDPlayer.jar but nothing happens. What's wrong? ... 56

b. Q: I run the HotCold manager with the Zipf workload, but all the pages are red. Why? 56

c. Q: How did you create the online demos? .. 56

d. Q: I have a cool idea how to improve SSDPlayer, can you do it? .. 56

e. Q: Where can I get the source code and Programmer’s Guide? ... 56

f. Q: I found a bug, how do I report it? ... 56

B. Copyright Notice .. 57

C. Citation .. 57

Introduction

1.1. What Is SSDPlayer?
SSDPlayer is an open source graphical tool for visualizing data layout and movement on flash devices. It
is designed to give a better understanding of how data gets from one place to another and why.

SSDPlayer supports two modes of operation. In simulation mode, it simulates the chosen device on a
raw I/O trace or on a synthetic workload generated by the built in workload generator, illustrating the
SSD state at each step. This illustration forms a “video” of the data movements that take place during
execution. This mode is useful for testing and analyzing various features without, or before,
implementing them in a full scale simulator or hardware platform.

In visualization mode, SSDPlayer illustrates operations that were performed on an upstream simulator
or device. The input in this mode is an output trace generated by a simulator, hardware evaluation
platform, or a host level FTL, describing the basic operations that were performed on the flash device—
writing a logical page to a physical location, changing block state, etc. This mode is useful for illustrating
processes that occur in complex research and production systems, without porting their entire set of
features into SSDPlayer.

The SSDPlayer display is organized into chips, planes, blocks and pages, as specified by the user at
startup. Colors and textures are used to represent page and block properties, such as data ‘temperature’
or valid page count. A page’s properties and state determine its fill color, texture, and frame color. A
block’s properties determine its background and frame colors. Users can control all the display
parameters by editing the configuration file before starting SSDPlayer.

1.2. What SSDPlayer Is Not
SSDPlayer is not a performance simulator. You can use it to see how data moves, but not how much
time it takes. Increased, unexpected and inefficient data movement will harm your device’s
performance – SSDPlayer will help you detect such movements and understand what causes them.
SSDPlayer does not (currently) perform latency or throughput calculations. The speed of the simulation
depends on the strength of the machine you use to run SSDPlayer, not on the simulated device.

SSDPlayer is not a device analyzer. You cannot use SSDPlayer to see what’s going on inside the
commercial device plugged into your machine. Data movement in SSDs is controlled by internal mapping
and maintenance mechanisms. Currently, manufacturers do not expose the full details of the
mechanisms they use, so they cannot be visualized by an external tool.

2. Flash Terms and Concepts

2.1. Flash Elements: Cells, Pages, and Blocks
A flash memory chip is built from floating-gate cells that can be programmed to store a single bit, two
bits, or three bits, according to the flash technology used. Cells are organized into pages, which are
equivalent to sectors in hard disk drives – this is the smallest unit that can be read or written. Typical
page sizes are between 2KB and 16KB.

Note: SSDPlayer displays entire pages, regardless of the technology used to program their cells.

Pages are grouped into blocks, which are the unit of erasure (explained below). Blocks typically contain
64 to 384 pages.

Within the chip, blocks are divided into two or more planes, which are managed and accessed
independently. Planes within a chip can operate concurrently, performing independent operations such
as Read, Write, and Erase.

2.2. Flash Operations: Read, Write, and Erase
A write operation applies voltage to the cells of a page. This modifies their state to store either 0 or 1.
The write operation is sometimes referred to as "program". A read operation probes the cells of a page
to test whether their value is 0 or 1.

In order to modify the content of a page, an erase operation must be applied to the entire block
containing that page. An erase operation resets all the pages in the block to their initial state, and the
data written on them is lost. Erases are typically an order of magnitude slower than the reads and
writes.

2.3. Flash Translation Layer (FTL)
To avoid the delay of an erase operation every time the content of a page is modified, the firmware of
the SSD includes a mapping between logical pages to physical ones. The flash translation layer (FTL) is
the part of the firmware responsible for this mapping.

The basic mapping works as follows:

• The FTL maintains a page mapping table. Each entry in the table corresponds to a logical page.
The value of that entry is a pointer to the physical page that stores the data of this logical page.

• The operating system sends an I/O write request to logical page p. This is equivalent to a logical
block address (LBA) of a hard disk drive.

o If this is the first time p is written, then the data is programmed onto a clean physical
page.

o If p is already mapped to some physical page, then the data on this physical page is
marked as invalid, and p is written on a new, clean, physical page. This process is called
an out-of-place write.

• The FTL updates the mapping table entry for p to point to the new physical page.

2.4. Garbage Collection
SSDs contain overprovisioned space – extra capacity that is used for out-of-place writes. When the extra
capacity is full of invalid pages, some of them must be erased so that additional writes can be
performed. The garbage collection mechanism is the part of the firmware in charge of this process.

The basic garbage collection works as follows:

• When the number of clean blocks drops below a threshold, this triggers the garbage collection
process. This threshold is typically 1% to 5% of the SSD's capacity.

• The garbage collection mechanism chooses a victim block to be erased. This choice depends on
the garbage collection algorithm. A commonly used algorithm is the greedy one. It chooses the
block with the smallest number of valid pages as victim.

• The valid pages from the victim block are copied to a new, clean, block. The mapping table is
updated with their new location. This process is called moving.

• The victim block is erased. The block is now clean and can be used for writing new pages.

3. SSDPlayer Components
SSDPlayer provides visual representation of the behavior of the SSD on a given workload. An SSD includes a
physical flash device and its firmware. In SSDPlayer, the firmware is represented by a manager. The manager
includes the mapping and garbage collection mechanisms. The workload represents the set of applications
that run in the system and use the SSD. It includes a set of I/O write commands (in simulation mode) or FTL
commands (in visualization mode). The screen displays the state of the SSD after each input command from
the workload.

3.1. SSD
An SSD includes a physical device and a manager. You can specify the parameters of the physical device
and the manager by editing the configuration file before starting SSDPlayer. You can choose a manager
from the menu after starting SSDPlayer.

3.1.1. Physical Device
A physical device is defined by the number of flash chips, the number of planes per chip, the
number of blocks per plane and the number of pages per block. Edit the configuration file to
specify these parameters before starting SSDPlayer.

3.1.2. Manager
A manager is the combination of policies or algorithms used to manage the physical device. It
includes the mapping by the FTL, the garbage collection mechanism and possibly additional
optimizations and features. This version of SSDPlayer includes an implementation of several
managers, described in Section 0.

You can choose which manager to run from the manager menu after you start SSDPlayer. Some
managers depend on parameters from the configuration file. You can specify those before you
start SSDPlayer. If you wish to implement an alternative manager, please consult the
Programmer’s Guide.

3.2. Input Workload
The workload is the input of SSDPlayer. It represents the set of operations that are performed on the
device and change its state throughout the simulation.

In simulation mode, the workload is the set of I/O write commands that the top level application and
operating system send to the device. You can provide the workload to SSDPlayer as an input trace file by
choosing it in the trace menu. Alternatively, you can ask SSDPlayer to generate a synthetic workload for
you, by choosing one of the available distributions in the generator menu.

In visualization mode, the workload is the set of FTL commands that were performed by the simulator or
platform which are visualized by SSDPlayer. You should generate a workload trace by executing the
simulator or platform. You can then specify this trace as input to SSDPlayer by choosing it in the trace
menu.

3.2.1. Workload Generators
The workload generator generates a series of write commands to the SSD’s pages according to the
distribution you choose. The generator sends these commands directly to SSDPlayer for
simulation. You can choose the distribution from the generator menu, and then specify the
distribution parameters in the dedicated window.

The current version of SSDPlayer implements Uniform and Zipf distributions. If you wish to
implement an alternative distribution, please consult the Programmer’s Guide.

3.2.1.1. Uniform
The Uniform workload generator generates write commands that are uniformly distributed
across the device. In other words, all the logical pages are written with the same probability.

When you choose the Uniform generator you have to specify two parameters:

• The number of requests to generate.
• The random seed: this is a parameter used for initializing the process of generating

random numbers. You can ensure that two executions run on the exact same
workload by specifying the same seed in both of them.

3.2.1.2. Zipf
The Zipf workload generator generates write commands that are skewed: some logical pages
are written more frequently than others: the frequency of access to block 𝑖𝑖 is proportional to
𝑖𝑖
𝛼𝛼𝑖𝑖� for 𝛼𝛼 close to 1. This distribution is commonly used to represent realistic workloads such

as those of web servers, file servers, etc.

When you choose the Zipf generator you have to specify three parameters:

• The number of requests to generate.
• The random seed: this is a parameter used for initializing the process of generating

random numbers. You can ensure that two executions run on the exact same
workload by specifying the same seed in both of them.

• The exponent: this parameter specifies how skewed the workload is. A higher
exponent means that the popular pages are more popular.

Note: the exponent must be greater than zero.

3.2.2. Input Trace Files
You can use a trace of a real workload as an input for SSDPlayer, to visualize the behavior of the
SSD on your own data. The format and content of the trace file depend on the mode in which you
run SSDPlayer.

3.2.2.1. Simulation Mode: Raw I/O Trace
In a raw I/O trace, each line represents an I/O command that the operating system sent to
the SSD. You should generate the trace in advance and use it as input in the execution of
SSDPlayer. SSDPlayer currently supports a basic trace format and an extended format with
temperature tags. If you wish to extend SSDPlayer to support additional formats, please
consult the Programmer’s Guide.

3.2.2.1.1. Raw I/O Trace Generation
You can generate the trace in one of several ways:

1. Collect the trace by running an application or a benchmark in your own system, and log
all I/O commands in a separate file.

2. Download a trace from a public repository, such as SNIA IOTTA.
3. Use your own workload generator to create a synthetic trace that represents your

workload.

Note: make sure that the trace you generate, downloaded, or collected is in the format
used by SSDPlayer.

3.2.2.1.2. Raw I/O Trace Format
The basic trace format is similar to the default trace format of DiskSim1. The trace lines
include several fields that are not in use in this version of SSDPlayer, and are included
for compatibility.

 Field Values Meaning Notes

1 Request arrival time Number (Up to
6 decimal digits)

Time in
Milliseconds from
start of trace

Not in use

2 Device number Integer For systems that
have more than one
storage device

Not in use

3 Page number Integer Must be smaller
than device size

4 Request size Integer For I/O operations
on several pages

In RAID
managers
only

5 I/O command "R": Read
"W": Write

Currently only write
is supported

6 Temperature Integer For defining data
"hotness". Range is
specified in
configuration file

Optional
field

Example input line: 2.371000 0 1 8 W 2

Explanation of example: This request arrived 2.371 milliseconds after the beginning of
the simulation. It is a write request to page number 1, which has a temperature of 2.
SSDPlayer ignores the arrival time, device number (0) and the request size (8).

You can find complete sample traces in the traces directory.

1 John S. Bucy, Jiri Schindler, Steven W. Schlosser, Gregory R. Ganger. The DiskSim simulation environment version
4.0 reference manual, May 2008, Carnegie Mellon University, Pittsburgh, PA.

http://iotta.snia.org/
http://www.pdl.cmu.edu/DiskSim/

3.2.2.2. Visualization Mode: FTL Command Trace
In an FTL command trace, each line represents an action performed by the FTL of your
simulator or platform. You should generate the trace in advance and use it as input in the
execution of SSDPlayer. SSDPlayer currently supports a basic set of FTL commands and two
write levels. If you wish to extend SSDPlayer to support additional commands, please consult
the Programmer’s Guide.

3.2.2.2.1. FTL Command Trace Generation
Follow these steps to generate an FTL command trace:

1. Modify your platform or simulator to log all FTL operations in a dedicated log file. Use
the trace format below for the operations you log. You only need to do this once for
every system.

2. Execute your platform or simulator with the workload you want to examine. You can use
your own applications, a benchmark suite or tool, or some other synthetic workload.

3. You can repeat step 2 to generate logs for different workloads. You do not have to
repeat step 1.

3.2.2.2.2. FTL Command Format
SSDPlayer currently supports a basic set of FTL operations, which are detailed below.
The FTL operations are performed on one or more entities, whose definitions depend on
the manager in use.

Reusable visualization Manager Entities

• Logical page: the integer representing this page in the raw I/O command.
• Physical page: the tuple <plane,block,page> that identifies the physical location of

the page.
• Block: the pair <plane,block> that identifies the physical location of the block.

RAID Visualization Manager Entities

The RAID manager supports multiple chips, which are part of the definition of physical
pages and blocks. In addition, it distinguishes between data and parity logical writes.

• Logical page: the integer representing this data page in the raw I/O command.
• Parity page: the pair <stripe,parity number> that identifies the stripe and parity

number within this stripe.
• Physical page: the tuple <chip,plane,block,page> that identifies the physical location

of the page.
• Block: the tuple <chip,plane,block> that identifies the physical location of the block.

 Commands in common to all Visualization managers
Command Format Meaning

Change State S <s> Change the state of block to <s>. <s>
can be [C]Clean, [A1]Active1, [U]Used,
[Re]Recycled, [A2]Active2, or [Ru]Reused.

Begin garbage
collection

B Begin garbage collection in block .

Erase E Erase block and change its state to
[C]Clean.

End garbage
collection

G End garbage collection in block .

Reusable Visualization Manager Commands
Command Format Meaning

1st Write W 1 <lp> <pp> Write logical page <lp> in 1st write, using
physical page <pp>. If an old copy of <lp>
exists, mark it as invalid.
The difference between 1st and 2nd writes is
explained in Section 10.3.

2nd Write W 2 <lp> <pp1> <pp2> Write logical page <lp> in 2nd write, using
physical pages <pp1> and <pp2>. If an old
copy of <lp> exists, mark it as invalid.
The difference between 1st and 2nd writes is
explained in Section 10.3.

Move M 1 <lp> <pp> Move logical page <lp> to physical page
<pp> as a first write, and mark the old copy
as invalid. Move is called only during
garbage collection.

RAID Visualization Manager Commands
Command Format Meaning

Write data

W 1 <lp> <pp> D <stripe> Write logical data page <lp> on physical
page <pp>, and mark it as belonging to
stripe <stripe>. If an old copy of <lp> exists,
mark it as invalid.

Write parity

W 1 <lp> <pp> P <stripe> Write logical parity page <lp> on physical
page <pp>, and mark it as belonging to
stripe <stripe>. If an old copy of <lp> exists,
mark it as invalid.

Move M 1 <lp> <pp> P/D <stripe> Move logical page <lp> to physical page
<pp> and mark it as a data (D) or parity (P)

page belonging to stripe <stripe>. The old
copy is marked as invalid but belongs to
stripe <stripe> until its block is erased.
Move is called only during garbage
collection.

If you wish to extend SSDPlayer to support additional commands or alternative formats, please consult
the Programmer’s Guide.

4. Downloading and Installing SSDPlayer

4.1. System Requirements
SSDPlayer is a Java application. In order to execute it, you must have Java Runtime Environment (JRE)
version 1.7 or higher installed on your computer.

4.2. Downloading SSDPlayer
Download SSDPlayer at the SSDPlayer Home Page.

• Windows Users
o Download SSDPlayer_v1.3.zip
o Extract its content by right clicking and choosing the "Extract" option of your compression

software (for example, WinZip or WinRAR).
• Linux and Mac Users

o Download SSDPlayer_v1.3.tar.gz.
o Extract its content by typing "tar –xzvf SSDPlayer_v1.0.tar.gz" in the command line.

4.3. Installing SSDPlayer
After you extract the zipped files, your directory will include:

1. The java executable SSDPlayer.jar.
2. The resources directory, with a default configuration file: ssd_config.xml.
3. The traces directory with some sample traces to get you started.
4. The copyright notice.

No further installation is required. You can edit resources/ssd_config.xml to modify the default
configuration parameters, or start SSDPlayer immediately.

http://www.cs.technion.ac.il/%7Egala/SSDPlayer/

5. Running SSDPlayer in default (GUI) mode
After you download and unzip the SSDPlayer files you can immediately start running it using the sample
trace files or the built in workload generators.

5.1. Start SSDPlayer
• Windows Users

o Execute SSDPlayer by double clicking on SSDPlayer.jar.
• Linux and Mac Users

o Execute SSDPlayer by typing "java –jar SSDPlayer.jar" in the command line.

The initial screen displays the SSD that is defined by the physical parameters in the configuration file. At
this point all the blocks are clean, and all the pages are filled with the clean color (white is the default).

5.2. Choose Manager
The default manager is the Greedy manager. You can use this manager, or choose from the set of
supported managers displayed in the manager menu.

Managers in the top part of the menu run in simulation mode. Managers in the bottom part of the
menu run in visualization mode.

5.3. Choose Input Workload
SSDPlayer can run on two input types. It can read input from a trace file (in simulation and in
visualization mode), or it can generate its own workload (in simulation mode only).

5.3.1. Choose Workload Generator
In simulation mode, you can ask SSDPlayer to generate a random workload for you.

Note: this option is not available in visualization mode. If you chose a visualization manager skip to
step 5.3.2.

5.3.1.1. Press the generator button

5.3.1.2. Choose one of the available workload generators.

5.3.1.3. Edit the distribution parameters (or use the default ones) and press OK.

5.3.1.4. Continue to step 5.4.

5.3.2. Choose Input Trace File
If you generated your own workload traces, or wish to experiment with the sample traces in the
SSDPlayer distribution:

5.3.2.1. Press the open trace button.

5.3.2.2. Browse the directory menu to find your trace directory.

5.3.2.3. Double click on the name of the trace file you want to execute, or mark it and press
Open.

 Note: you will only see the trace files of the type suitable for the manager you chose.

5.4. Start the Simulation

5.4.1. Play
If you press play, the simulation will run continuously until the end of the trace file or generated
workload, or until you stop it.

5.4.2. Next Frame
If you press next frame, SSDPlayer will read one input line from the file or generator, and update
the display to show the outcome of this line. You must continue to press this button to advance
the simulation.

Note: at any point, instead of pressing next frame you can press play to run the simulation
continuously. The simulation will continue from the current device state and the next input line.

5.5. Stopping the Simulation

5.5.1. Pause
Press pause if you wish to pause the simulation and continue later on from the same point. The
continuous run will stop and the state of the device will `freeze’.

You can continue running the simulation from the same input and state by pressing play or next
frame.

Note: you cannot start a new simulation when the current simulation is paused. If you wish to start
over, press stop.

5.5.2. Stop
Press stop if you wish to end the simulation of this workload. You will then be able to examine the
state of the device at the point your simulation stopped. You can now start a new simulation by
going back to steps 5.2 or 5.3.

Note: you cannot continue the simulation from where you stopped it. You must start a new
simulation by going back to steps 5.2 or 5.3. Next time, if you wish to be able to continue the
simulation, press pause.

5.6. Highlight Stripes (RAID Managers)
The RAID managers allow you to highlight all the pages in a specified stripe so that you can follow their
movements easily. All the data and parity pages belonging to this stripe will be marked with a colored
page frame. The parameters in the configuration file (Section 0) determine whether invalidated pages
(that have not yet been erased) are also highlighted, and the frame color for each stripe.

5.6.1. Open the Stripes Info Window
Press Show Stripes Info to highlight a stripe, or to view the pages included in the highlighted
stripes. The Stripes Info window will open.

Note: This button is enabled only in the RAID managers and only when the simulation is paused.

5.6.2. Show another stripe
Press Show another stripe to specify a stripe for highlighting. The Choose Stripe window will
open.

5.6.2.1. Specify a stripe to highlight
Specify the stripe to highlight by naming one of the pages it contains. This can be either a
physical page, a logical data page, or a parity page. Choose the specification method by marking
it on the Choose Stripe window.

5.6.2.1.1. Specify a physical page
A physical page is identified by its chip, plane, block, and page numbers. Fill those in the
corresponding slots and press OK.

5.6.2.1.2. Specify a logical page
Fill the logical page number you wish to specify and press OK.

5.6.2.1.3. Specify a parity page
A parity page is identified by its stipe and parity numbers. Fill those in the corresponding slots
and press OK.

You will return to the Stripes Info window, where the stripe you specified will be highlighted by a bold,
colored frame, and all the logical pages in it will be listed. The same color will be used on the main
simulation view for the page frames of all the pages belonging to this stripe (Section 7.3).

Note: You may choose to highlight a stripe that was not fully written when the simulation was paused,
i.e., only some of this stripe’s pages were written. In this case, the logical pages that have already been
written will appear in the Stripes Info window and will be highlighted on the main simulation view.
Additional pages belonging to this stripe will be highlighted when they are written, and will appear in
the Stripes Info window in the next time it is opened.

5.6.3. Remove stripe
To remove a selected stripe, press on the Remove button next to the corresponding stripe. The
stripe will be removed from the Stripes Info window, and its pages will not be highlighted
anymore.

Note: SSDPlayer allows you to highlight up to 10 stripes simultaneously.

5.7. Manage breakpoints
Breakpoints in SSDPlayer are similar to debugging breakpoints. They define conditions that cause the
simulation to pause. You can define multiple breakpoints, specifying several different conditions.

You can define breakpoints manually, at any time during the simulation. You can also define
breakpoints in a special configuration file that t is loaded before the simulation starts.

5.7.1. Defining Breakpoints
Click the stopwatch button to open the Manage Breakpoints Window.

Note: This button is active only when the simulation is paused.

The window allows adding, removing, and editing breakpoints.

When it is opened, the window will show existing breakpoints: those that were defined earlier in this
window and those defined in the breakpoints file.

5.7.1.1. Add a new breakpoint
 Click the ‘Define new breakpoint’ button.

The ‘define breakpoint’ window will open

 Choose a breakpoint type from the scroll down menu. The relevant parameters for this type will
appear. Edit the parameters you are interested in and press OK.

 Note: Entering illegal parameters for a breakpoint will report an error and discard the
breakpoint.

5.7.1.2. Enable/Disable breakpoint
In the `manage breakpoints’ window, click the ‘Active’ button next to an active breakpoint to
disable it.

An inactive breakpoint will be crossed out. You can enable it be clicking the ‘Inactive’ button next to it.

5.7.1.3. Edit an existing breakpoint
Click the ‘Edit’ button in the `manage breakpoints’ window.

Change the breakpoint type or its parameters and click OK.

5.7.1.4. Remove an existing breakpoint
Click the ‘X’ button next to the breakpoint you wish to remove.

5.7.2. Breakpoint Hits
A breakpoint hit means that the condition defined in one of the breakpoints is true. When this happens,
an appropriate message will appear in the message log, the simulation will pause and the breakpoints
button will be outlined in red.

If you click the breakpoints button the ‘manage breakpoints window’ will open and highlight in red all
the breakpoint that were hit. You can edit them or remove them if you like.

You can continue the simulation just like after a regular pause.

5.8. Zoom in and out
The different zoom levels in SSDPlayer allow you to choose the level of detail presented on the display. They
are useful for simulating large devices that cannot be viewed entirely on the screen in the default level of
detail.

Note: Some zoom level options are only available in specific managers.

5.8.1. Choosing a zoom level
Click the magnifying glass button to open the Zoom Level Window.

Note: Clicking this button pauses the simulation.

The ‘zoom level window’ shows the available zoom levels for the current manager.
Changing the zoom level will update the device’s display accordingly.

5.8.2. Detailed zoom level
This is the standard zoom level. Page numbers and counters are displayed, written pages are colored
and deleted pages are crossed.

5.8.3. Pages zoom level
In this level counters are removed, the sizes of pages and the spacing between them is reduced to half
of the original. Invalid pages are marked with a thin line instead of the current bold cross, and the
“moved” page pattern is converted to a lighter shade of the original page.

5.8.4. Blocks zoom level
This is an aggregated zoom level. Pages are no longer visible; the color of the block represents the state
of its pages.

5.8.4.1. Valid count
The color of the block represents its number of valid pages.

5.8.4.2. Erase count
The color of the block represents the number times is has been erased.

5.8.4.3. Average temperature
The color of the block represents the average temperature of its pages.

Note: this zoom level is available only in the HotCold manager.

5.8.4.4. Average write level
The color of the block represents the average write level of its pages.

Note: this zoom level is available only in the Reusable manager.

5.8.4.5. RAID parity
The color of the block represents the portion of parity and data pages in it.

Note: this zoom level is available only in the RAID managers.

5.8.5. Small Blocks zoom level
This is an aggregated zoom level which is identical to the Blocks zoom level in every aspect except that
the blocks are smaller. For a detailed description of the options in this level see Section 5.8.4.

5.9. View Information
You can view the internal simulation state in detail in the information screen. This screen contains the state
of every entity in the simulation, as well as the accurate numbers of the parameters displayed in the
histograms.

5.9.1. Open the information screen
Press the ‘Information’ button. This will pause the simulation and open the ‘Information’ window.

Note: this button is also enabled after the simulation has terminated normally.

Choose the entity you wish to view. You can view the information of the entire device, or a specific chip,
plane, block, or page. The entity’s state will be displayed on the right-hand side of the window.

5.9.2. Saving the simulation state
You can save the information displayed in the information window for future reference by clicking the
‘Save’ button.

The state of all entities (those displayed as well as those that are not) will be saved in an xml file in the
location you choose.

5.10. Speedup with sampling rate
You can increase the simulation speed by allowing the display to “skip” simulation steps – the simulation will
continues but the display will only show a sample of the simulated operations. A sampling rate of X means
that the display will be updated every X operations (garbage collection is considered a single operation in
simulation mode). You can modify the sampling rate at any time during the simulation.

5.10.1. Open the sampling rate screen
Press the ‘sampling’ button. This will pause the simulation and open the ‘manage sampling rate’
window.

5.10.2. Set the sampling rate
Set the sampling rate to your preferred value and press the ‘ok’ button. The default value is taken from
the configuration file. A sampling rate of 1 means that the display will be updated every 1 frame.

6. Running SSDPlayer in CLI mode
Although SSDPlayer is intended, primarily, for visualization purposes, its graphical interface and functionality can
be bypassed for quick execution and experimentation. The command line interface (CLI) allows you to execute
the simulation mode by specifying all the configuration and runtime parameters.

When executed in CLI mode, SSDPlayer will perform the simulation without displaying the SSD components, and
without opening the display window at all. It will log the final state and statistics of the simulation in an
information file similar to the one saved from the information screen (See section 5.9).

When the simulation completes successfully, a message will be displayed on the standard output.

6.1. Command line parameters

6.1.1. -C <config file name>
Specify the name of the configuration file (this can be the same file you use for running SSDPlayer in the
default (GUI) mode.

6.1.2. -M <manager name>
Specify one of the names from the list of managers in Section 10. The name of the manager should be
identical to its name in the configuration file.

6.1.3. -F <trace file name>
Specify the name of the input trace file. The input trace should be compatible with the chosen manager.

Note: you must specify either an input trace or a workload generator.

6.1.4. -G (use workload generator)
This option invokes one of the workload generators described in Section 3.2.1. The -G option is followed
by required and optional parameters.

6.1.4.1. Required parameters
generator type Either “-U” (uniform) or “-Z” (Zipf)

workload length Number of generated write requests

seed Random seed (used for reproducible results)

Exponent The exponent for the Zipf distribution (required for the Zipf workload generator)

6.1.4.2. Optional parameters
Max write size Maximum size of write request (in pages)
is write size uniform Either “1” (uniform) or “0” (exponential) distribution of request sizes

Note: you must specify either an input trace or a workload generator.

6.1.5. -O <output file name>
Specify the name of the output (information) file. If a file with this name already exists, it will be
overwritten.

6.1.6. -help
Displays the following help message with the allowed command line formats:

1. -C <config file name> -M <manager Name> -F <trace file name><trace file extension> -O <output file
name>

2. -C <config file name> -M <manager Name> -G -U <workload length> <seed> -O <output file name>

3. -C <config file name> -M <manager Name> -G -U <workload length> <seed> <max write size> <is write
size uniform> -O <output file name>

4. -C <config file name> -M <manager Name> -G -Z <workload length> <seed> <exponent> -O <output
file name>

5. -C <config file name> -M <manager Name> -G -Z <workload length> <seed> <exponent> <max write
size> <is write size uniform> -O <output file name>

6.2. Examples
The following examples correspond to the allowed formats listed above.

1. java -jar SSDPlayer.jar -C resources/ssd_config.xml -M Greedy -F traces/Small_Uniform.trace -O
target/out

2. java -jar SSDPlayer.jar -C resources/ssd_config.xml -M "RAID 5" -G -U 10000 0 -O
target/generateUniform

3. java -jar SSDPlayer.jar -C resources/ssd_config.xml -M "RAID 5" -G -U 10000 0 1 T -O
target/generateUniformResizableUniform

4. java -jar SSDPlayer.jar -C resources/ssd_config.xml -M "RAID 5" -G -Z 10000 0 0.5 -O target/generateZipf

5. java -jar SSDPlayer.jar -C resources/ssd_config.xml -M "RAID 5" -G -U 10000 0 0.5 1 T -O
target/generateZipfResizableUniform

6.3. Error messages
In CLI mode, error messages will be displayed in the standard output. This includes errors related to CLI
parameters, configuration and input files, and runtime errors.

7. Understanding the SSDPlayer Display

7.1. Physical Device Display
On the main display, you will see pages change their color and texture according to the data movement
on the device. The block counters will also be updated in each step.

The main display features are:

• A white page is clean.
• A page is filled with a plain pattern when it is written. The logical page number appears on the

physical page (unless counters are turned off in the parameter file).
• A bold cross over a page shows that this copy is invalid, and the page has been written

elsewhere.
• A checkered fill pattern shows that the logical page has been moved to this location by a

garbage collection process.
• A bold red frame around a block shows that it is currently allocated as an active block in this

plane. There may be more than one active block per plane.
• In visualization mode, a bold black frame shows that this block is the victim block of an ongoing

garbage collection process.
• The valid count shows how many pages in this block contain valid data.
• The erase count shows how many times this block has been erased.

7.2. Histograms

7.2.1. Write Amplification
This histogram shows the write amplification. The rightmost point in the graph is the current value,
and the histogram shows a history of the last 1000 frames. There are 200 points in the graph, each
one of them is the average value of the write amplification in 5 frames.

The write amplification is calculated as follows:

𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 + 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤

 ,

where writes and moves are counted since the beginning of the simulation.

7.2.2. Writes Per Erase
This histogram shows how many pages were written on average for every erase operation. The
rightmost point in the graph is the current value, and the histogram shows a history of the last
1000 frames. There are 200 points in the graph, each one of them is the average value of the
writes per erase in 5 frames.

Writes per erase are calculated as follows:

𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤−𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 ,

where writes and erases are counted since the beginning of the simulation. Initial writes is the
number of pages written before the first garbage collection.

Note: this measure is useful when performing multiple writes (see Sections 0 and 8.2.5), in which
case write amplification does not accurately reflect the utilization of the pages2. With standard
SSDs, such as when using the Greedy manager, these measures are equivalent: writes per erase =
pages per block / write amplification.

7.2.3. Valid Histogram
This histogram shows the distribution of valid pages in the blocks. For each valid count, it shows
the percentage of the device’s blocks that have this valid count. The values are updated in each
frame to represent the current state of the device.

7.2.4. HotCold Write Amplification (HotCold Manager)
This histogram shows the write amplification within each partition – the color of the plot is the
color of the hottest pages in the partition. The rightmost points in the graph are the current
values, and the histogram shows a history of the last 1000 frames. There are 200 points in the
graph, each one of them is the average value of the write amplification in 5 frames.

The write amplification within each partition p is calculated as follows:

𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (𝑝𝑝) = 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤(𝑝𝑝) + 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑝𝑝)
𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤(𝑝𝑝)

 ,

where writes(p) is the number of pages written in partition p, and moves(p) is the number of pages
moved during garbage collection in partition p. Writes(p) and moves(p) are counted since the
beginning of the simulation.

2 Eitan Yaakobi, Alexander Yucovich, Gal Maor, Gala Yadgar. When Do WOM Codes Improve the Erasure Factor in Flash
Memories? In proceedings of IEEE International Symposium on Information Theory (ISIT '15), June 2015.

7.2.5. Partition Distribution (HotCold Manager)
This histogram shows the distribution of blocks into partitions. For each partition, it shows the
percentage of the device’s blocks that store pages for this partition. It also shows the percentage
of blocks that are in the Clean state, and are not currently allocated to any partition. The values
are updated in each frame to represent the current state of the device.

7.2.6. Write Level Distribution (Reusable Manager)
This histogram shows the distribution of written pages into write levels (first or second). For each
write level, it shows the percentage of the device’s valid logical pages that are currently written in
this level. The values are updated in each frame to represent the current state of the device.

7.2.7. Block State Distribution (Reusable Manager)
This histogram shows the distribution of blocks into states. For each state, it shows the percentage
of the device’s blocks that are currently in this state. The values are updated in each frame to
represent the current state of the device.

7.2.8. Valid 1 and Valid 2 Histograms (Reusable Manager)
These histograms are identical to the Valid Histogram in the Greedy and HotCold managers. They
show the histogram of blocks with valid pages in each level:

• The Valid 1 Histogram shows the distribution of blocks according to valid pages in first write.
• The Valid 2 Histogram shows the distribution of blocks according to valid logical pages in

second write.

7.2.9. Parity Update Overhead Histogram (RAID Managers)
This histogram shows the parity overhead, which measures the extra writes generated by parity
updates. The rightmost point in the graph is the current value, and the histogram shows a history
of the last 1000 frames. There are 200 points in the graph, each one of them is the average value
of the parity overhead in 5 frames.

The parity overhead is calculated as follows:

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 + 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤

 ,

where data writes and parity writes are counted since the beginning of the simulation.

7.3. Stripe Highlighting (RAID Managers)
You may specify stripes for highlighting in the Stripe Info window (Section 5.6), so that their pages will
be highlighted on the main simulation view. If several stripes are specified, the pages of each stripe will
be highlighted in with a different frame color.

In this example below, stripe 0 is highlighted in red. Logical page 4 and its parity are marked with a red
page frame. The invalidated copy of the parity is also highlighted because show_old_parity was set in
the configuration file (Section0).

7.4. Information Screen
The information screen displays the internal device state in text format, so that it can be inspected closely
and saved for future reference and analysis.

Field Level Meaning
Request number Device Last write request that was handled

Number of chips Device Number of chips in the device

Number of planes Chip Number of planes in the chip

Number of blocks Plane Number of blocks in the plane

Number of pages Block Number of pages in the block

Total logical pages written Device, chip, plane Number of logical pages written in the viewed entity

Note: in the RAID managers, this is the sum of data and
parity pages

Total parity pages written Device, chip, plane RAID managers only: number of parity pages written in
the viewed entity

Total data pages written Device, chip, plane RAID managers only: number of data pages written in
the viewed entity

Clean blocks Device, chip, plane Current number of clean block in the viewed entity

Block erasures Device, chip, plane Number of block erasures performed so far in the
viewed entity

GC invocations Device, chip, plane Number of times the garbage collection process was
invoked so far in the viewed entity
Note: this is equivalent to the number of erasures in all
managers except the Reusable mangers.

Recycled blocks Device, chip, plane Reusable managers only: current number of recycled
blocks in the viewed entity

Writes per erase Device The latest value from the “writes per erase” histogram

Write amplification Device The latest value from the “write amplification”
histogram

Hot cold write amplification Device HotCold manager only: The latest value from the
“HotCold write amplification” histogram

Parity overhead Device RAID managers only: The latest value from the “parity
update overhead” histogram

Valid histogram Device Number of pages with each valid count (equivalent to

the values displayed in the “valid histogram”
Field Level Meaning
Valid1 histogram Device Reusable managers only: number of pages with each

valid1 count (equivalent to the values displayed in the
“valid1 histogram”)

Valid2 histogram Device Reusable managers only: number of pages with each
valid2 count (equivalent to the values displayed in the
“valid2 histogram”)

Status Block The state of the block (see list in Section 3.2.2.2.1)

Erase count Block Number of times this block was erased

Valid count Block Current number of valid pages in this block

Write level Block, page Reusable managers only:
Block: highest write level of a page in this block
Page: write level of this page

Partition Block HotCold manager only: the partition this block currently
belongs to

Average page temperature Block HotCold manager only: average temperature of all
pages in this block (valid and invalid)

Average page write level Block Reusable managers only: average write level of pages in
this block (valid and invalid pages)

LP Page Logical page currently written on this physical page

Is clean Page True if this physical page is clean, False otherwise

Is valid Page True if the logical page written on this physical page is
valid, False otherwise

Moved by GC Page True if the logical page written on this physical page
was copied from another page during garbage
collection, False otherwise

Stripe Page RAID managers only: the number of stripe the logical
page written on this physical page belongs to

Parity number Page RAID managers only: the RAID functionality of the
logical page written on this physical pages: 0 for data
pages, 1 or 2 for parity pages

Temperature Page HotCold managers only: temperature of the logical

page written on this physical page.

8. Editing the Configuration File
The configuration file is an XML file that contains the parameters of the flash device and its manager. To
modify these parameters, edit and save the configuration file before you start SSDPlayer. The configuration
file is ssd_config.xml, located in the resources directory.

• Right click on the configuration file name and choose Edit.

• Select the parameter you wish to modify and type in the value you want.

• Save the configuration file.

There are three categories of configuration parameters. The physical parameters define the properties of
the flash device. The visual parameters define the way the device is displayed on the screen. The
management parameters define the behavior of each of the managers.

8.1. Physical Parameters
Parameter Values Meaning

overprovisioning integer Size of overprovisioned space (percent of total capacity).

gc_threshold integer Garbage collection threshold (as percent of total capacity).

* If this parameter is specified then gc_threshold_blocks should
not be specified

gc_threshold_blocks integer Garbage collection threshold (absolute number of blocks per
plane).

* If this parameter is specified then gc_threshold should not be
specified

chips integer Number of flash chips in the device.

 Visualization mode currently supports only 1 chip.

planes integer Number of planes in each chip.

blocks integer Number of blocks in each plane.

pages integer Number of pages in each block.

The logical capacity of the device is computed as follows:

�𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑖𝑖 × 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 × 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 × 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 × (1 − 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜)� − (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 × 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)

Note: one block in each plane is reduced from the logical capacity to accommodate the active block.

8.2. Visual Parameters
Parameter Values Meaning

show_counters yes/no Yes: Display logical page numbers, block numbers and block states.
No: Display only page pattern and color.
Use this option to define smaller pages and fit larger chips on
the SSDPlayer display.

speed integer Simulation speed (number of frames per second).
 The maximum speed depends on the machine you use to run
SSDPlayer. If speed is higher than this maximum, the simulation
speed will be the maximum possible on your machine.

view_sample Integer The sampling rate of the display. For a sampling rate of X, the
display will be updated once every X operations.

page_width integer The width of the rectangle representing one physical page (pixels).

page_height integer The height of the rectangle representing one physical page (pixels).

block_space integer The space between blocks in the same plane (pixels).

pages_in_row integer The number of pages in a row within a block.
 The number of rows will be set automatically to
 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∕ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑖𝑖𝑖𝑖_𝑟𝑟𝑟𝑟𝑟𝑟

blocks_in_row integer The number of blocks in a row within a plane
 The number of rows will be set automatically to
 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ∕ 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑖𝑖𝑖𝑖_𝑟𝑟𝑟𝑟𝑟𝑟

planes_in_row integer The number of planes in a row within a chip
 The number of rows will be set automatically to
 𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛 ∕ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑖𝑖𝑖𝑖_𝑟𝑟𝑟𝑟𝑟𝑟

font_type font The font used in the display. The supported fonts are system
dependent.
 Windows: see fonts in “Control Panel\Appearance and
Personalization\Fonts”
 Linux: the ‘fc-list’ command lists all supported fonts.
 Mac: see fonts in “/Library/Fonts” and “/System/Library/Fonts”

caption_font_size integer The font size used for titles

control_font_size integer The font size used for counters, graph titles and messages

page_font_size integer The font size used for page numbers

active_color color The frame color used for active blocks

outer_bg_color color The background color of the entire display

intermediate_bg_color color The background color within chips

inner_bg_color color The background color within planes and histograms

border_color color The color of border between displayed objects

page_text_color color The color used for page numbers

control_text_color color The color used for counters, graph titles and messages

highlight_color color The color used for highlighting user selections in menus etc.

Manager Parameters
 By editing the manager parameters, you can:

1. Control additional specific display characteristics like colors and patterns.
2. Fine tune the behavior of the manager.

There are several parameters that are common for all managers. Other parameters are defined
specifically for certain managers.

8.2.1. Defining Colors
Colors are a key feature of SSDPlayer. They are part of the definition of every manager. The colors
are defined in the parameter file in RGB format: R represents the amount of Red, G represents
Green, and B represents Blue.

For example, by setting <r="0" g="0" b="255"> you get blue.

Here is a list of the RGB colors used in the default configuration. You can modify the colors used
for each manager in the specific manager parameters.

Color Used in Default Use Red Green Blue

White All managers Clean pages 255 255 255

Dark Yellow Greedy manager Written pages 255 220 100

Light green Reusable manager First writes 50 255 255

Light blue Reusable manager Second writes 50 150 255

Dark red HotCold manager Hot pages 60 120 255

Dark blue HotCold manager Cold pages 255 60 60

Gray HotCold manager Lukewarm pages 200 200 200

Dark gray RAID managers Data pages 175 175 175

Dark blue RAID managers Parity pages 100 150 255

Dark green RAID 6 manager Second parity pages 50 150 150

8.2.2. Parameters In Common for All Managers
These basic parameters are defined and used in the same way in all the managers:

Parameter Values Meaning

name string The name of the manager as it will be displayed in the
manager menu.

clean_color color The color of clean (erased) pages. The default is white.

8.2.3. Greedy Manager
Parameter Values Meaning

written_color color The color of written pages. The default is dark yellow.

8.2.4. HotCold Manager
Parameter Values Meaning

cold color The color of written pages in the coldest temperature. The
default is dark blue.

hot color The color of written pages in the hottest temperature. The
default is dark red.

intermediate color The color of written pages in the intermediate (neutral)
temperature. The default is gray.

 Modify this parameter only if you wish to define your
own color scale.

min_temperature integer The temperature of the hottest pages in the trace

 Small ≡ Hot

max_temperature integer The temperature of the coldest pages in the trace

 Large ≡ Cold

partition integer The coldest pages that should be written in the partition.

 This parameter should appear for each partition, from
hottest to coldest. The temperatures should be within the
range defined by min_temperature and max_temperature.

 The last partition should be for max_temperature.

If you wish to disable hot/cold separation define only
the last partition.

SSDPlayer assumes that the partitions are defined
correctly and in order. If they are not, it will not start.

Reusable Manager
The difference between 1st and 2nd writes is explained in Section 10.3.

8.2.5. HotCold-Reusable Manager

8.2.6. Reusable visualization Manager

Parameter Values Meaning

first_write color The color of pages written in first write. The default is light
green.

second_write color The color of pages written in second write. The default is
light blue.

Parameter Values Meaning

first_write color The color of pages written in first write. The default is light
green.

second_write color The color of pages written in second write. The default is
light blue.

temp_limit integer The coldest pages that can be written in second writes

Parameter Values Meaning

first_write color The color of pages written in first write. The default is light
green.

second_write color The color of pages written in second write. The default is
light blue.

8.2.7. Parameters In Common for All RAID Managers

The
page

frame color for highlighted stripes is determined as follows. For strip n, the value of 𝑥𝑥 ∈ {𝑅𝑅,𝐺𝐺,𝐵𝐵} in the
frame is based on the value of 𝑥𝑥 in stripe_frame_color and stripe_frame_step and computed by:
 (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥) + 𝑛𝑛 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥)) 𝑚𝑚𝑚𝑚𝑚𝑚 256 ,

 7.3.9 RAID Visualization Manager

Parameter Values Meaning

data_color color The color of the data pages. The default is dark gray.

parity_color color The color of the parity pages. The default is dark blue.

 This parameter should appear once for each parity.
E.g., in RAID 6, two parity colors are specified, and the
default color of the second parity page is dark green.

show_old_parity yes/no Yes: highlight invalidated parity as a part of their stripe
until they are erased.

No: highlight only valid parity pages

show_old_data yes/no Yes: highlight invalidated data as a part of their stripe
until they are erased.

No: highlight only valid data pages

stripe_frame_color color The base color for determining page frames for
highlighted stripes.

stripe_frame_step color The step color for determining page frames for
highlighted stripes.

Parameter Values Meaning

stripe_size integer The number of data pages in each stripe.

9. Editing the breakpoints configuration file
The ssd_breakpoints.xml file contains definitions of breakpoints that will be defined on startup. This
option allows you to run several simulations with the same breakpoints, without having to manually
define them in the ‘Manage breakpoints’ window. The file should be located in the ‘resources’ directory.

Define new breakpoints inside the <breakpoints> tag.

The type attribute determines the type of the requested breakpoint.
Some breakpoints may be defined for different levels, such as a specific chip or plane or the entire
device. They are specified in the table below.
For your convenience, the default ssd_breakpoints.xml file contains commented definitions for all
breakpoints as reference.

Breakpoint type Available levels Meaning
AllocateActiveBlock N/A Block B is allocated as active
CleanBlocks Plane/Chip/Device Number of clean blocks in plane/chip/device is C
EraseBlock N/A Erase block B
EraseCountAnyBlock N/A Any block reaches erase count C
EraseCountBlock N/A Block B reaches erase count C
GCNthTime Plane/Chip/Device Garbage collection is invoked for the i-th time in

plane/chip/device
HotColdPartitionHolds-
PercentOfBlocks

N/A Partition P holds percent R of blocks

PagesWritten Plane/Chip/Device X logical pages are written in plane/chip/device
ReusableBlockRecycled N/A Reusable block B is recycled
ReusableLevelBlocksPercent N/A Reusable percent of blocks in write level
WriteAmplification N/A Write Amplification reaches W
WriteLp N/A Logical page L is written
WritePp N/A Physical page P is written
WritesPerErase N/A Writes per erase reach W
HotColdWriteAmplification N/A Partition P write amplification reaches W
VictimBlockHasValidPages Plane/Chip/Device Victim block has X valid pages
ParityOverhead N/A Parity overhead reaches W
WriteInStripe N/A Logical write in stripe P

10. Supported Managers

10.1. Greedy Manager
This is the simplest manager that includes only the basic features required by an FTL.

Page allocation. When a write request arrives for a page that is written for the first time, the page is
written in the plane that has less valid blocks. When a write request arrives for a page that was written
before, the old copy is invalidated and the page is written on the same plane.

Block allocation. In each plane, one block is the active block, and this is where new pages are written.
When the active block is full, another clean block in the same plane is allocated as active and used for
writing pages according to the requests in the workload.

Garbage collection. The greedy garbage collection algorithm erases the block with the minimum
number of valid pages (MinValid), breaking ties according to the number of erasures: the “youngest”
block, with the lowest number of block erasures, will be chosen. This prevents extreme cases of uneven
wear, without performing active migration for wear-leveling. Garbage collection is activated whenever
the number of clean blocks drops below the threshold. The threshold is computed by 𝑔𝑔𝑔𝑔_𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 ×
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏.

Sample Trace. You can use the following trace from the traces directory of the SSDPlayer distribution
with the default parameters in the configuration file:

• Uniform.trace
• Zipf.trace

10.2. HotCold Manager
This manager separates logical pages into partitions (within every plane) according to the frequency in
which they are being written. We call this frequency temperature: frequently written pages are hot and
rarely written pages are cold.

Special input. The HotCold manager requires a workload with temperature tags, so it must include the
optional 6th field in each line. If this field is absent (for example, if you use the workload generator), all
pages are assumed to have the hottest temperature. See Section 3.2.2.1.2 for more details on the trace
format.

You should also edit the configuration file to tell the manager how you would like to separate the
temperatures to be divided into partitions. See Section 3.2.2.1.2 for more details on the specific
parameters of this manager.

Page allocation. When a write request arrives for a page that is written for the first time, the page is
written in the plane that has less valid blocks. Within the plane, the page is written on the active block of
the partition that this page’s temperature belongs to. When a write request arrives for a page that was
written before, the old copy is invalidated and the page is written on the same plane, in the same
partition.

Block allocation. In each partition, one block is the active block, and this is where new pages are written.
When the active block in a partition is full, another clean block in the same plane is allocated to this
partition.

Garbage collection. The HotCold manager uses the same greedy garbage collection algorithm as the
Greedy manager. This means that the victim block for erasure is chosen regardless to which partition it
currently belongs to. The consequence is that partition sizes are determined, implicitly, according to the
number of writes with each temperature.

Sample Trace. You can use the following trace from the traces directory of the SSDPlayer distribution:

• Zipf_w_Temperatures.hotcold

You can use the default parameters in the configuration file, or you can add, remove and change
partitions to see how this affects the behavior of the HotCold manager.

10.3. Reusable Manager
This manager is a simplified version of Reusable SSD3. Pages can be used for writing twice: the first write
is the same as in the Greedy manager (and any standard SSD). The second write uses special codes for
writing one logical page onto two physical pages whose content has been invalidated, but have not been
erased. SSDPlayer does not perform any actual coding. It only simulates the amount of space required
for each logical page, and its location.

Special input. No special input or parameters are required.

Page allocation. Logical pages are divided between planes like in the Greedy manager. If the active block
in the plane is clean, then the logical page is written in first write. If the active block in the plane is
recycled, then the logical page is written in second write on two physical pages in the active block. These
pages must contain logical pages that have been previously invalidated.

Block allocation. Each plane has one active block. When the active block is full, if there are recycled
blocks in the plane, one of them is allocated as active. If not, one of the clean blocks is allocated as
active.

Garbage collection. The Reusable manager uses the greedy garbage collection algorithm with a slight
modification. The victim block in the plane is the one with the lowest number of logical valid pages
(regardless of whether they are written in first or second writes).

The victim block is recycled if the following three conditions hold:

• It has only been used for first writes.

3 Gala Yadgar, Eitan Yaakobi, Assaf Schuster. Write Once, Get 50% Free: Saving SSD Erase Costs Using WOM Codes.
In proceedings of 13th USENIX Conference on File and Storage Technologies (FAST '15), February 2015.

• There are at least 2 clean blocks in this plane already.
• The number of recycled blocks in the plane is lower than the reserved value:

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 × 2 × 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

Otherwise, the victim block is erased.

Sample Trace. You can use the following trace from the traces directory of the SSDPlayer distribution
with the default parameters in the configuration file:

• Uniform.trace
• Zipf.trace

10.4. HotCold-Reusable Manager
This manager adds hot and cold data separation to the Reusable manager. It writes in second write only
hot logical pages. These pages are likely to be invalidated by the time the block has to be erased, so
garbage collection will be more efficient.

Special input. The HotCold-Reusable manager requires a workload with temperature tags, like the one
used by the HotCold manager. It must include the optional 6th field in each line. If this field is absent (for
example, if you use the workload generator), all pages are assumed to have the highest temperature.
See Section 3.2.2.1.2 for more details on the trace format.

You should also edit the configuration file to specify the temperature threshold for pages that will be
written in second writes. Colder pages will be written in first writes. See Section 8.2.5 for more details
on the specific parameters of this manager.

Page allocation. Logical pages are divided between planes like in the Greedy manager. If the page is hot
and a recycled active block is allocated in this plane, then the logical page is written in second write on
two physical pages in this active block. Otherwise, the logical page is written in first write on the clean
active block.

Block allocation. Each plane has one or two active blocks. There is always a clean active block for first
writes, and whenever possible, there is a recycled active block for second writes.

When the clean active block is full, another clean block in the same plane is allocated as active.

When the recycled active block is full, if there are recycled blocks in the plane, one of them is allocated
as active. If not, the manager will search again for a recycled block in this plane the next time a page will
be written.

Garbage collection. The HotCold-Reusable manager uses the same garbage collection algorithm used by
the Reusable manager.

Sample Trace You can use the following trace from the traces directory of the SSDPlayer distribution:

• Zipf_w_Temperatures.hotcold

You can use the default parameters in the configuration file, or you can choose another temperature as
the threshold for second writes to see how this affects the behavior of the HotCold-Reusable manager.

10.5. RAID Managers
These managers are based on the basic Greedy Manager, which was enhanced with RAID within the
device’s chips. They distinguish between data and parity pages, which are represented by different
colors, and between the stripes pages belong to.

Parity pages are represented by pairs: <stripe,parity number> because there may be more than one
parity page in each stripe. Thus, when a parity page is displayed on the main view, the number written
on it represents the stripe it belongs to, and its color determines the parity number.

Note: while the logical page numbers are exclusive across the entire SSD, the parity page number is
exclusive only within its stripe.

Page allocation. Write requests arrive for data pages only. Data pages are mapped to chips according to
the chosen RAID level. The allocation is the same as in the Greedy manager. When a data page is
written, the parity pages in its stripes are updated. This means the old parity pages are be invalidated,
and the new parity pages are written on the same chip of the invalidated parity pages.

Block allocation. Same as in the Greedy Manager.

Garbage collection. Same as in the Greedy Manager.

Sample Traces. Stripes are determined for each page according to its logical page number. Thus, you can
use the same traces used by the Greedy Manager from the traces directory of the SSDPlayer
distribution, with the default parameters in the configuration file:

• Uniform.trace
• Zipf.trace

The RAID managers support write requests of several pages, according to the write size as specified in
the write command. If more than one page is written in the same stripe, the stripe parities will be
updated only once for each command.

The workload generator allows you to specify the maximum write size and the write size distribution
(uniform/zipf) when initializing the simulation.

10.5.1. RAID 1 Manager
This manager implements RAID level 1 (mirroring): each chip is mirrored by another chip, i.e.,
the stripe size is one and there is one parity page in each stripe.

Note: RAID 1 requires an even number of chips.

8.5.2. RAID 5 Manager
This manager implements RAID level 5 (interleaved parity): the number of data pages in a stripe
is computed by 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑖𝑖 − 1. There is one parity in each stripe, and the chip holding
the parity page in stripe s is computed by 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑐𝑐ℎ𝑖𝑖𝑝𝑝𝑠𝑠 − 1 − (𝑠𝑠 % 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑖𝑖).

10.5.2. RAID 6 Manager
This manager implements RAID level 6 (erasure coding): the number of data pages in a stripe is
computed by 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑖𝑖 − 2. There are two parities in each stripe and the chip holding
parity page i in stripe s is computed by 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑖𝑖 − 2 − (𝑠𝑠 % 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑖𝑖) + 𝑖𝑖 .

10.6. Reusable visualization Manager
This manager processes the commands in the FTL command trace, and updates the device state and
histograms. The display is similar to the one in the HotCold-Reusable manager: the same histograms are
included, and the pages are colored according to their write level. In addition, during garbage collection
the frame of the victim block is emphasized.

Note: this manager does not make any management decisions. It simply displays the decisions made by
the manager of the system used to generate the trace.

Sample Trace. You can use the following traces from the traces directory of the SSDPlayer distribution
with the default parameters in the configuration file:

• DiskSim_prn_0.log
• DiskSim_Zipf_w_Temp.log

10.7. RAID Visualization Manager
Similar to the Reusable visualization Manager, this manager processes the commands in the FTL
command trace, and updates the device state and histograms. However, its semantics resemble those of
the RAID Managers: it distinguishes between data and parity pages and includes the notion of stripes.
The display is similar to the one in the RAID Managers: the same histograms are included, and the pages
are colored according to their function as data or parity pages. Stripe highlighting is enabled and works
in a similar manner.

Note: some FTL commands have a different syntax than in the Reusable visualization Manager (Section
3.2.2.2.2). The FTL command trace must be generated on a platform that implement striping:

The stripe size is determined in the configuration file, and the number of parity pages in each strip is
determined by the number of parity_color parameters specified: instance i defines the color for parity i.

Note: while the logical page numbers are exclusive across the entire SSD, the parity page number is
exclusive only within its stripe

Sample Trace. You can use the following traces from the traces directory of the SSDPlayer distribution
with the default parameters in the configuration file:

• uni_1200_raid5.rlog
• uni_1800_raid6.rlog
• zipf_1200_raid5.rlog
• zipf_1800_raid6.rlog

A. FAQ

a. Q: I double click on SSDPlayer.jar but nothing happens. What's wrong?
A: First make sure you extracted the zipped distribution files, and are executing from a local
directory on your machine. Then make sure you have Java Runtime Environment (JRE) installed on
your machine.

b. Q: I run the HotCold manager with the Zipf workload, but all the pages are
red. Why?
A: The workload generator does not generate temperature tags, so the HotCold manager assumes
the default (hottest) temperature for all pages. You can use the Zipf_w_Temperatures.hotcold
sample trace file instead.

c. Q: How did you create the online demos?
A: The demos on the SSDPlayer home page were recorded and edited with Camtasia®. We plan to
add a recording option to SSDPlayer in the future.

d. Q: I have a cool idea how to improve SSDPlayer, can you do it?
A: SSDPlayer is an ongoing, open source project. Feel free to contact us to find out if someone is
working on something similar. You can also go directly to the development tree and add features
yourself!

e. Q: Where can I get the source code and Programmer’s Guide?
A: You can find the full SSDPlayer distribution, source code, demos and guides on the SSDPlayer
home page.

f. Q: I found a bug, how do I report it?
A: You can use the contact information on the SSDPlayer home page. We do our best to fix critical
problems.

http://www.cs.technion.ac.il/%7Egala/SSDPlayer/
https://github.com/shroman3/SSDPlayer
http://www.cs.technion.ac.il/%7Egala/SSDPlayer/
http://www.cs.technion.ac.il/%7Egala/SSDPlayer/
http://www.cs.technion.ac.il/%7Egala/SSDPlayer/

B. Copyright Notice

SSDPlayer Visualization Platform (Version 1.0)
Authors: Roman Shor, Gala Yadgar, Eitan Yaakobi, Assaf Schuster
Copyright (c) 2015, Technion – Israel Institute of Technology
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

C. Citation
If you use SSDPlayer for academic purposes, please cite the MSST ’17 paper for reference:

Gala Yadgar, Roman Shor. Experience from Two Years of Visualizing Flash with SSDPlayer. In proceedings of 33rd
International Conference on Massive Storage Systems and Technology (MSST 2017), May 2017, Santa Clara, CA.

@INPROCEEDINGS{SSDPlayer17,
 author = {Yadgar, Gala and Shor, Roman},
 title = {Experience from Two Years of Visualizing Flash with {SSDPlayer}},
 booktitle = {33rd International Conference on Massive Storage Systems and Technology (MSST)},
 year = {2017},
}

The original HotStorage ’15 paper: Gala Yadgar, Roman Shor, Eitan Yaakobi, Assaf Schuster. It's Not Where Your
Data Is, It's How It Got There. In proceedings of 7th USENIX Workshop on Hot Topics in Storage and File Systems
(HotStorage '15), July 2015, Santa Clara, CA.

@INPROCEEDINGS{SSDPlayer15,
 author = {Yadgar, Gala and Shor, Roman and Yaakobi, Eitan and Schuster, Assaf},
 title = {It's Not Where Your Data is, It's How It Got There},
 booktitle = {7th USENIX Workshop on Hot Topics in Storage and File Systems (HotStorage)},
 year = {2015},
}

http://storageconference.us/2017
https://www.usenix.org/conference/hotstorage15/workshop-program/presentation/yadgar

	Preface
	Document History
	Authors
	Development
	Description
	Date
	Version
	Introduction
	1.1. What Is SSDPlayer?
	1.2. What SSDPlayer Is Not

	2. Flash Terms and Concepts
	2.1. Flash Elements: Cells, Pages, and Blocks
	2.2. Flash Operations: Read, Write, and Erase
	2.3. Flash Translation Layer (FTL)
	2.4. Garbage Collection

	3. SSDPlayer Components
	3.1. SSD
	3.1.1. Physical Device
	3.1.2. Manager

	3.2. Input Workload
	3.2.1. Workload Generators
	3.2.1.1. Uniform
	3.2.1.2. Zipf

	3.2.2. Input Trace Files
	3.2.2.1. Simulation Mode: Raw I/O Trace
	3.2.2.1.1. Raw I/O Trace Generation
	3.2.2.1.2. Raw I/O Trace Format

	3.2.2.2. Visualization Mode: FTL Command Trace
	3.2.2.2.1. FTL Command Trace Generation
	3.2.2.2.2. FTL Command Format
	Reusable visualization Manager Entities
	RAID Visualization Manager Entities
	Commands in common to all Visualization managers
	Reusable Visualization Manager Commands
	RAID Visualization Manager Commands

	4. Downloading and Installing SSDPlayer
	4.1. System Requirements
	4.2. Downloading SSDPlayer
	4.3. Installing SSDPlayer

	5. Running SSDPlayer in default (GUI) mode
	5.1. Start SSDPlayer
	5.2. Choose Manager
	5.3. Choose Input Workload
	5.3.1. Choose Workload Generator
	5.3.2. Choose Input Trace File

	5.4. Start the Simulation
	5.4.1. Play
	5.4.2. Next Frame

	5.5. Stopping the Simulation
	5.5.1. Pause
	5.5.2. Stop

	5.6. Highlight Stripes (RAID Managers)
	5.6.1. Open the Stripes Info Window
	5.6.2. Show another stripe
	5.6.2.1. Specify a stripe to highlight
	5.6.2.1.1. Specify a physical page
	5.6.2.1.2. Specify a logical page
	5.6.2.1.3. Specify a parity page
	5.6.3. Remove stripe

	5.7. Manage breakpoints
	5.7.1. Defining Breakpoints
	5.7.1.1. Add a new breakpoint
	5.7.1.2. Enable/Disable breakpoint
	5.7.1.3. Edit an existing breakpoint
	5.7.1.4. Remove an existing breakpoint
	5.7.2. Breakpoint Hits

	5.8. Zoom in and out
	5.8.1. Choosing a zoom level
	5.8.2. Detailed zoom level
	5.8.3. Pages zoom level
	5.8.4. Blocks zoom level
	5.8.4.1. Valid count
	5.8.4.2. Erase count
	5.8.4.3. Average temperature
	5.8.4.4. Average write level
	5.8.4.5. RAID parity
	5.8.5. Small Blocks zoom level

	5.9. View Information
	5.9.1. Open the information screen
	5.9.2. Saving the simulation state

	5.10. Speedup with sampling rate
	5.10.1. Open the sampling rate screen
	5.10.2. Set the sampling rate

	6. Running SSDPlayer in CLI mode
	6.1. Command line parameters
	6.1.1. -C <config file name>
	6.1.2. -M <manager name>
	6.1.3. -F <trace file name>
	6.1.4. -G (use workload generator)
	6.1.4.1. Required parameters
	6.1.4.2. Optional parameters
	6.1.5. -O <output file name>
	6.1.6. -help
	6.2. Examples
	6.3. Error messages

	7. Understanding the SSDPlayer Display
	7.1. Physical Device Display
	7.2. Histograms
	7.2.1. Write Amplification
	7.2.2. Writes Per Erase
	7.2.3. Valid Histogram
	7.2.4. HotCold Write Amplification (HotCold Manager)
	7.2.5. Partition Distribution (HotCold Manager)
	7.2.6. Write Level Distribution (Reusable Manager)
	7.2.7. Block State Distribution (Reusable Manager)
	7.2.8. Valid 1 and Valid 2 Histograms (Reusable Manager)
	7.2.9. Parity Update Overhead Histogram (RAID Managers)

	7.3. Stripe Highlighting (RAID Managers)
	7.4. Information Screen

	8. Editing the Configuration File
	8.1. Physical Parameters
	8.2. Visual Parameters
	Manager Parameters
	8.2.1. Defining Colors
	8.2.2. Parameters In Common for All Managers
	8.2.3. Greedy Manager
	8.2.4. HotCold Manager
	Reusable Manager
	8.2.5. HotCold-Reusable Manager
	8.2.6. Reusable visualization Manager
	8.2.7. Parameters In Common for All RAID Managers
	7.3.9 RAID Visualization Manager

	9. Editing the breakpoints configuration file
	10. Supported Managers
	10.1. Greedy Manager
	10.2. HotCold Manager
	10.3. Reusable Manager
	10.4. HotCold-Reusable Manager
	10.5. RAID Managers
	10.5.1. RAID 1 Manager
	8.5.2. RAID 5 Manager
	10.5.2. RAID 6 Manager
	10.6. Reusable visualization Manager
	10.7. RAID Visualization Manager

	A. FAQ
	a. Q: I double click on SSDPlayer.jar but nothing happens. What's wrong?
	b. Q: I run the HotCold manager with the Zipf workload, but all the pages are red. Why?
	c. Q: How did you create the online demos?
	d. Q: I have a cool idea how to improve SSDPlayer, can you do it?
	e. Q: Where can I get the source code and Programmer’s Guide?
	f. Q: I found a bug, how do I report it?

	B. Copyright Notice
	C. Citation

