
1

1

SSDPlayer Visualization Platform
Programmer’s Guide for Version 1.3.0

Roman Shor
Gala Yadgar
Or Mauda

Dolev Hadar
Roee Matza

Lior Zelikman

2

2

Contents
1. Introduction .. 4

1.1. SSDPlayer overview ... 4

1.2. This Guide ... 4

2. Design principles ... 5

2.1. General .. 5

2.2. Platform Independent ... 5

2.3. Easily Extendible ... 5

3. Creating an executable jar File .. 5

4. Architecture .. 6

4.1. Class Diagram .. 6

4.2. Basic Workflow ... 8

4.3. General Entities ... 8

4.3.1. Adding a new FTL use case .. 8

4.4. RAID Entities .. 9

4.4.1. Adding a new RAID use case ... 9

5. Features .. 10

5.1. Statistics Getters ... 10

5.1.1. Adding a Statistics Getter .. 10

5.2. Trace Parsers ... 10

5.2.1. Adding a File Trace Parser ... 10

5.3. Workload Generators ... 11

5.3.1. Adding a Workload Generator .. 11

5.4. Breakpoints ... 11

5.4.1. Adding a breakpoint .. 11

5.5. Zoom Levels .. 12

5.5.1. Existing zoom levels: ... 12

5.5.2. Adding a new Zoom Level ... 13

5.6. Info screen .. 13

5.7. Error messages .. 13

5.8. Trace Player ... 14

5.9. Sampling rate .. 14

5.10. CLI mode ... 14

6. Important Classes.. 15

6.1. SSDManager<P, B, T, C, D> - Package manager, Extends java.lang.Object 15

3

3

6.2. StatisticsGetter - interface .. 17

6.3. Page - Package entities, Extends java.lang.Object .. 18

6.4. Block <P> - Package entities, Extends java.lang.Object .. 18

7. Appendix: package UMLs .. 21

7.1. General .. 21

7.2. Breakpoints ... 21

7.3. Entities .. 22

7.3.1. Entities basic ... 23

7.3.2. Entities hot_cold ... 24

7.3.3. Entities RAID .. 25

7.3.4. Entities reusable .. 26

7.3.5. Entities reusable visualization ... 27

7.4. Manager .. 28

7.4.1. Manager HotColdStatistics.. 28

7.4.2. Manager RAIDStatistics ... 29

7.4.3. Manager SecondWriteStatistics .. 29

7.4.4. Manager SimulationStatistics ... 30

7.5. Message .. 30

7.6. UI ... 31

7.6.1. UI Zoom ... 32

7.6.2. UI Sampling ... 32

7.6.3. UI Breakpoints ... 33

7.7. Utils ... 34

7.8. Zoom ... 34

4

4

1. Introduction

1.1. SSDPlayer overview

SSDPlayer is an open source graphical tool for visualizing data layout and movement on flash devices.
It is designed to give a better understanding of how data gets from one place to another and why.

SSDPlayer supports two modes of operation. In simulation mode, it simulates the chosen device on a
raw I/O trace or on a synthetic workload generated by the built in workload generator, illustrating the
SSD state at each step. This illustration forms a “video” of the data movements that take place during
execution. This mode is useful for testing and analyzing various features without, or before,
implementing them in a full-scale simulator or hardware platform.

In visualization mode, SSDPlayer illustrates operations that were performed on an upstream simulator
or device. The input in this mode is an output trace generated by a simulator, hardware evaluation
platform, or a host level FTL, describing the basic operations that were performed on the flash
device— writing a logical page to a physical location, changing block state, etc. This mode is useful for
illustrating processes that occur in complex research and production systems, without porting their
entire set of features into SSDPlayer.

The SSDPlayer display is organized into chips, planes, blocks and pages, as specified by the user at
startup. Colors and textures are used to represent page and block properties, such as data
‘temperature’ or valid page count. A page’s properties and state determine its fill color, texture, and
frame color. A block’s properties determine its background and frame colors. Users can control all the
display parameters by editing the configuration file before starting SSDPlayer.

1.2. This Guide

This guide is intended as a starting point to users who wish to add or change features within the
SSDPlayer implementation. Thus, we refer the reader to the SSDPlayer User’s Guide for a more
detailed description of the available features and on installing and using SSDPlayer.

The SSDPlayer homepage contains the full SSDPlayer documentation, executables, demos, and links
to the SSDPlayer repository on GitHub.

http://ssdplayer.cswp.cs.technion.ac.il/

5

5

2. Design principles
We describe the design principles of SSDPlayer to help the reader understand our motivation for
structuring the code the way we have done. We also encourage future contributors to follow those
principles in the design of their own additions.

2.1. General
SSDPlayer was designed to provide the most general SSD functionality, in order to allow easy
extensions and additions for a wide range of capabilities. The basic flash components – e.g., page,
block, page mapping and garbage collection – are implemented as abstract classes that can be
extended according to the desired FTL functionality.

2.2. Platform Independent
SSDPlayer needs to be a portable software and supply testing and simulating capabilities to a wide
range of users, in the academic and industry communities. The idea was to implement the
simulator so that it will not be limited to a certain architecture or online use.
SSDPlayer is designed as an open source project in order to be helpful in researching SSD. Anyone
who is interested in visualizing their use case can use the SSDPlayer source and extend it for their
own purposes.

2.3. Easily Extendible
One of the more important goals of the project is to allow future research of different FTLs.
Thus, we designed the simulator to be easily extendible and configurable for the specific needs of
any future work.
All the simulator components are easily extendible. The Trace Parser can be extended for a new
use case, additional aggregated statistics may be added to the basic histograms, and new
synthetic access distributions can be used as Workload Generators.

3. Creating an executable jar File
To create a jar file with IntelliJ, use the provided pom.xml file, and create a run configuration such as
BUILD_JAR.xml. Then run the program. The jar file will be created in the “target” directory.

6

6

4. Architecture

4.1. Class Diagram

7

7

8

8

4.2. Basic Workflow
SSDPlayer Loading Process:

Simulation workflow:

4.3. General Entities
In core of SSDPlayer are 5 entities (in the package entities): Page, Block, Plane, Chip, and Device.

We designed these five abstract classes to facilitate the development of new use case FTL
managers for SSDPlayer. Each abstract class has unique fields and methods suitable for the entity
it represents.

When an operation needs to be performed on a page (for example, invalidate page), the manager
will call a method (invalidate page) in the Device. The Device will call a method in the correct Chip
object, which will call a method in the correct Plane object, which will call a method in the correct
Block object, and then at last the operation will take place in the correct Page.

These abstract classes support the builder pattern, for easy creation of new objects. Thus, you will
have to implement a builder class if you wish to extend one of these entities.

4.3.1. Adding a new FTL use case
You can either use the existing entities with a new use case SSD manager, or implement a
new use case SSD manager, with new entities. Adding new use case manager is possible by
extending the SSDManager and then implementing methods like getTraceParser and
initStatisticsGetters. Implementing new entities for your use case is possible by extending
Page, Block, Plane, Chip, and Device.

Selecting SSD
Manager

• Selecting either simulation or visualization manager from a list

• Get the TraceParser from the selected manager
• Get the StatisticsGetters from the selected manager
• Get the WorkloadGenerators from the selected manager

Initializing the view

• Either one of the WorkloadGenerators is selected
• Or an input file is loaded

Select Workload

• TraceParser is reading and parsing a line from the trace.
• Selected SSD manager is writing the LP on the current Device and sending

the new Device it to the view.
• StatisticsGraphs are updated with latest statistics.

Simulation Run

Loading
Configuration

• Parsing the command line arguments (in CLI mode)
• Opening ssd_config.xml

• Creating all the Simulation SSD managers using reflectrion.
• Creating all the Visualization SSD managers using reflectrion
• Each manager is reading its configuration from the config reader

Initializing SSD
managers

9

9

4.4. RAID Entities
All the RAID use case SSD managers extend the RAIDSSDManager class (in the package entities).

The RAIDSSDManager class is based on RAID entities (in the package entities.RAID): RAIDPage,
RAIDBlock, RAIDPlane, RAIDChip, and RAIDDevice.

RAID entities classes extend the matching abstract entities explained above, and are shared between
all the RAID managers (except RAIDDevice, as detailed below).

RAIDDevice is the most important class in the RAIDSSDManager. It takes care of writing the data pages
to the device and updates the matching parity pages.

Each RAID manager (RAID 1, RAID 5 and RAID 6) is composed of two classes:

1. Manager class (in the package manager) that extends the RAIDSSDManager class.
2. Device class (in the package entities.RAID) that extends the class RAIDDevice from the

package entities.RAID.

For example, the RAID 1 manager is composed of the classes RAID1SSDManager and RAID1Device.

4.4.1. Adding a new RAID use case
As explained above, you will have to create your own Manager class and Device class. The
methods you will have to implement in each class are as follows.
In the Manager class:

• void setParitiesNumber() – determines the number of parities in a stripe.
• void setStripeSize() – determines the stripe's size.
• RAIDDevice getEmptyDevice(List<RAIDChip>) – returns a new, empty device. You can

look at the existing methods in RAID 1/RAID 5/RAID 6 managers for more help.

In the Device class:
• boolean parityNeedUpdate(int lp, int parityNumber) – determines whether a parity

page need to be updated (Usually it's true for every parity).
• int getChipIndex(int lp) – returns the chip index of a logical page.
• int getPageStripe(int lp) – returns the stripe of a logical page.
• int getParityChipIndex(int lp, int parityNumber) – returns the parity chip index of the

parity parityNumber of the logical page lp.
• Builder getSelfBuilder() – returns a new Builder of the Device.

In addition to creating these two classes, you will have to add the related fields in the
configuration file:

1. name
2. clean_color
3. parity_color (maybe more than one field)
4. data_color
5. stripe_frame_color
6. stripe_frame_step

For a more detailed description of these fields, please consult the SSDPlayer User’s Guide.

10

10

5. Features

5.1. Statistics Getters
Statistics are gathered and displayed throughout the simulation and the visualization runs.
StatisticsGetter is the interface for returning statistics information given an SSD device, as a
List<StatisticsColumn>.

The basic StatisticsGetter is meant to collect statistics for the basic device type. To collect and access
statistics information for specific devices, use casting when passing the requested device as input.
See, for example, the HotColdStatisticsGetter which handles a HotCold Device.

Each SSDManager contains a list of statistics getters that will be displayed as histograms during the
simulation run. StatisticsGetter also specifies the type of graph (histogram) to be displayed by
extending GeneralStatisticsGraph.

5.1.1. Adding a Statistics Getter
Follow these steps to add a new statistics view to a new or existing SSDManager:

1. Extend the class StatisticsGetter. You will have to implement the following functions:
• int getNumberOfColumns(): returns the number of lines or columns to be presented in

the graph. This property cannot change dynamically, and will affect the way the graph is
formatted during initialization.

• GeneralStatisticsGraph getStatisticsGraph(): returns a graph (histogram) to be displayed.
This function is called once before the simulation/visualization start running.

• List<StatisticsColumn> getStatistics(Device device): this function will be called whenever
the state of the device changes, as long as the simulation/visualization is running.

• Entry<String, String> getInfoEntry(Device device): This is an entry for the info window.
2. Add your new custom statistics to the method initStatisticsGetters in the SSDManager you

are modifying.

5.2. Trace Parsers
The trace parser is the functionality responsible for converting the input file into operations handled
by the SSDManager. The FileTraceParser reads data from a specifically structured text file (file
extension can be specified). Every SSDManager, either for simulation or visualization, must have a
FileTraceParser that is responsible for generating input commands with the required fields.

5.2.1. Adding a File Trace Parser
Each SSDManager has one FileTraceParser. If you add new SSDManager that expects a workload
with new parameters (that are not handled by any existing FileTraceParser), you will need to
add a new FileTraceParser. To do, follow these steps:

1. FileTraceParser is generic and is configured using SSDManager and Device types. You will have
to extend FileTraceParser and implement the following functions:
• String getFileExtensions(): Specify file extensions expected by the parser.

11

11

• Device parseCommand(String command, int lineNo, Device device, SSDManager
manager): The main parsing method which receives an input line, a manager, and a device
to run the operation on. It parse the input line and generates an I/O command
(operation), runs it by the manager and returns the new, possibly modified, device.

2. Override the getFileTraseParser method in your new SSDManager and return the new
FileTraceParser.

5.3. Workload Generators
The workload generator is a method for generating synthetic input traces for a simulation run from
within SSDPlayer. The WorkloadGenerator generates I/O commands (operations) using the
distribution of your choice. For example, the ZipfWorkloadGenerator generates write operations
which are distributed across the device’s pages according to a Zipf distribution. A WorkloadWidget
creates an entry for the generator, where the user can choose the parameters of the workload, such
as length, request sizes, random seed, etc.

Note that this type of input is only applicable for simulation SSDManagers.

5.3.1. Adding a Workload Generator
To add a new Workload Generator, follow these steps:

1. Extend WorkloadGenerator and implement:
• int getLP(): get logical page for next write.
• int getLPArg(int lp): you can also override this method if you need to supply some

argument for the write of the current logical page.
2. Extend WorkloadWidget: add fields for user’s input (by calling super.addField(Component

input, String label)) and implement:
• WorkloadGenerator createWorkloadGenerator(): which will return your new custom

workload generator.
3. Add your new workload widget to the workload widgets list in method

getWorkLoadGeneratorWidgets() in the SSDManager of your choice.

5.4. Breakpoints
Breakpoints allow users to pause the simulation at interesting points in which a specific state or
condition are of interest.
The list of active break points is loaded from ssd_breakpoints.xml or added by the user using the
dialog box. After parsing a command and updating the device state, the SSDplayer checks for
breakpoint hits and if a hit occurs it pauses the simulation.
For example, to check for a “Clean Blocks in Chip” breakpoint hit, we check the previous clean block
count in the chip using previous device state and the new clean block count in the chip using new
device state and return true if clean block count has changed and now is equal to breakpoint value.

5.4.1. Adding a breakpoint
1. Extend the class BreakpointBase. You will have to implement the following functions:

12

12

• boolean breakpointHit(Device previousDevice, Device currentDevice): Given previous and
current device state return true if there is a breakpoint hit.

• String getDisplayName(): Return the name of the breakpoint
• String getDescription(): Return description of the breakpoint including its parameters.
• void addComponents(): Adding UI components to the breakpoint edit dialog.
• Parameters getters and setters.
• Boolean isEquals(IBreakpoint): compare two breakpoints.
• String getHitDescription(): return description on break point hit.
• boolean isManagerSupported(SSDManager): Given an SSDManager return true if the

breakpoint supports this manager.
2. Add an example to resources/ssd_breakpoints.xml. This file contains predefined breakpoints.

Its structure is:

<root>
 <breakpoints>
 <breakpoint type={breakpoint class name}>
 <{parameter1 name}> value </ {parameter1 name} >
 < {parameter2 name}> value </ {parameter2 name}>
 < {parameter3 name}>value</ {parameter3 name}>
 </breakpoint>
</root>

5.5. Zoom Levels
Zoom levels allow users to change the level of details presented on the device, in order to view larger
devices entirely on the display.

Each manager defines the list of zoom levels it supports. The supported zoom level is shown in the
Zoom dialog and pressing OK applies the zoom level. The Zoom levels listed in the dialog are grouped
according to the defined zoom level group and ordered according to the order they were added to
the manager.

5.5.1. Existing zoom levels:
1. Detailed - standard zoom level. Page numbers and counters are displayed, written pages are

colored and deleted pages are crossed.
2. Pages - counters are removed, the sizes of pages and the spacing between them is reduced

to half of the original. Invalid pages are marked with a thin line instead of the current bold
cross, and the “moved” page pattern is converted to a lighter shade of the original page.

3. Blocks - pages are no longer visible, the color of the block represents the state of its pages.
Color meanings:
• Valid count – darker color represents more valid pages.
• Erase count – darker color represents “older” blocks.
• Average temperature - average temperature of pages (for the HotCold manager).
• Average write level - average write level of pages (for the Reusable manager).
• Small Blocks - Same as Blocks, but blocks are smaller so that more can fit on the screen.

Color meanings are the same as in Blocks level.

13

13

5.5.2. Adding a new Zoom Level
4. Create a class that implements ZoomLevel.

• String getName(): returns the name of the zoom level.
• String getGroup(): returns the group that the zoom level belongs to (or null if it doesn’t

belong to any).
• applyZoom(SSDManager, VisualConfig): the function is called upon pressing the OK

button in the zoom level dialog. The function should change the appropriate parameters
in the visual configuration passed to it.

5. Add the zoom level to the list of supported zoom levels of the desired managers.

5.6. Info screen
The info screen enables detailed examination of the simulation state whenever it is paused (due to
user action or breakpoint hit). The info screen presents statistics and information about the
simulation’s entities, in an expandable list.

Each entity in the simulator (devices, chips, planes, blocks, pages and statistics getters) implements
the method public EntityInfo getInfo(). This method returns an EntityInfo which contains information
about the entity in the form of ordered key-value pairs.

The InfoDialog is initialized at startup with the device configuration. This creates the JTree (the model
used for the expandable list in the GUI) which represents the device and its entities.

Whenever the device is updated, the TraceParser invokes InfoDialog.setDevice(Device<?, ?, ?, ?>
currentDevice, int currFrameCounter). This method keeps the current state of the device updated in
the dialog. When the user clicks the info-screen button, the dialog is made visible. When the user
chooses an item in the expandable list, the function InfoDialog.setEntityInfo(TreePath
selectedNodePath) is called. In this function, the entity that is represented by the item in the
expandable list is found, the entity's getInfo() function is called, and the result EntityInfo is displayed
in the right-hand side of the dialog.

To add or change the information displayed about an entity, you should override or edit its getInfo()
method. You can add new information by using the method EntityInfo.add(String desc, String value,
int order) adding a new key-value pair. The order parameter determines the order of the new key-
value pair in the EntityInfo. Pairs are ordered in increasing order according to their order, breaking
ties according to addition order (the pair that was added first will be displayed first).

5.7. Error messages
This part of the code enables the programmer to display messages to the user in the error-log window
located in the lower right-hand side of the screen.

In order to display a message in the error log you can use the method MessageLog.log (Message
message). There are currently three types of messages in the simulator:

• ErrorMessage – informs the user about an error in the simulator. The error text is colored in red.
• InfoMessage – displays general information about the simulator run. The message text is colored

in blue.
• BreakpointMessage – indicates that the simulator run was paused because of a breakpoint hit.

The message text is colored in yellow.

14

14

Error messages can also be displayed before the simulator is loaded, in case an error prevents the
simulation from starting. This kind of message is used in order to inform the user of an error that
occurred during initialization.

In order to show a dialog containing an error message use the displayErrorFrame(String string)
method in the MainSimulationView class.

You can add a new type of message by extending the Message type.

5.8. Trace Player
The trace player is the functionality responsible for executing the commands of the chosen trace
when in GUI mode. It is called from the main simulation view after it is done initializing. It then
opens the trace file or uses a generator. It parses the commands one-by-one, executes them, and
updates the UI if necessary. It is also responsible of presenting the statistics and histograms to the
user and listening for requests such as pause/play/stop trace, open new trace, generate new
workload, manage breakpoints, next frame, zoom level, info, sample view. The most important
method is parseNextCommand, on which the program iterates until it finishes parsing all the
commands in the input file or that were generated.

5.9. Sampling rate
The sample view allows you to choose the rate at which the simulation display is updated. That is, if
the sampling rate is X, then the display will update itself after every frame whose frame number can
be divided by X. TracePlayer takes the value of X into consideration in the parseNextCommand
method, and only updates the display if the current frame number can be divided by X.

5.10. CLI mode
If the program is run form the command line, and it is given command line parameters, the program
will run in CLI mode. The parameters are supposed to be in one of the following formats:

1. -C <config file name> -M <manager Name> -F <trace file name>.<trace file extension> -O <output
file name>

2. -C <config file name> -M <manager Name> -G -U <workload length> <seed> -O <output file
name>

3. -C <config file name> -M <manager Name> -G -U <workload length> <seed> <max write size> <is
write size uniform> -O <output file name>

4. -C <config file name> -M <manager Name> -G -Z <workload length> <seed> <exponent> -O
<output file name>

5. -C <config file name> -M <manager Name> -G -Z <workload length> <seed> <exponent> <max
write size> <is write size uniform> -O <output file name>

The program parses the parameters and passes them together with the visual configuration to
MainCLI, which calls TracePlayerCLI in order to execute the trace commands without any display.
TracePlayerCLI works just like TracePlayer, but simpler, since it doesn't take care of updating the
display and having interactive windows with the user.

15

15

6. Important Classes
6.1. SSDManager<P, B, T, C, D> - Package manager, Extends java.lang.Object

Generic Type Parameters: P - Page, B - Block, T - Plane, C - Chip, D – Device

General description
SSDManager is an abstract base class for every FTL use case. All the non-abstract subclasses of
this class will be loaded using Reflections1 library. The UI classes use the static methods of this
class to get all the possible use cases in the simulator. This class includes static methods like
getManagerByName, getAllManagerNames etc. The static members are: simulatorsList - list of
names of the simulation SSD managers.
visualisationsList - list of names of the visualization SSD managers.
managersMap - holding all of the managers by their name (specified in the config file)
The non-static part presents the interface which every use case SSDManager will have to
implement. Methods like getTraceParser, initStatisticsGetters, etc. The type is Generic in terms of
the entities it uses so there will be static typing as strict as possible. Every SSDManager is defined
to use a very specific set of entities, which will be defined with the implementation of the use
case.

There is an abstract sub type of the SSDManager for the visualization managers. There is not
much difference to them, but the visualization managers are harder to generalize because they
are more tailor made for the specific a specific input. Needless to say that the trace parser for
visualization managers will be more complicated, also the manager will need more access
methods than just writeLp, for example see ReusableVisualizationSSDManager.

Method Details

initializeManager
static void initializeManager(XMLGetter xmlGetter)

Initialize SSD manager using given configuration. First loads all of the subclasses of the SSDManager. After
creates instance of the non-abstract ones, calls their initialization method and adds them to the
managersMap, by their name (specified in the config file).

Parameters: xmlGetter - - configuration getter

getManagerByName
public static SSDManager<?,?,?,?,?> getManager(java.lang.String managerName)

Returns: the use case manager with the specified name, or null if not found

getAllSimulationManagerNames
static java.lang.Iterable<java.lang.String> getAllSimulationManagerNames()

Returns: all the use case simulation managers

getAllVisualizationManagerNames
static java.lang.Iterable<java.lang.String> getAllVisualizationManagerNames()

Returns: all the visualization managers

1 https://code.google.com/p/reflections/ Open source library, WTFPL license. Reflections scans classpath, indexes
the metadata, allows to query it on runtime and may save and collect information for modules within a project.

https://code.google.com/p/reflections/

16

16

getAllVisualizationManagerNames
static java.lang.Iterable<java.lang.String> getAllVisualizationManagerNames()

Returns: all the visualization managers

getTraceParser
abstract TraceParserGeneral<D,? extends SSDManager<P,B,T,C,D>> getTraceParser()

Returns: get trace parser for this manager

getEmptyPage
abstract P getEmptyPage()

Returns: empty page for device initializing.

getLpRange
int getLpRange()

Calculates and returns the logical page addresses range of the device. Calculates using the physical sizes
and the Over-Provisioning.

Returns: the size of the device in pages

getManagerName
java.lang.String getManagerName()

Returns: name of the SSDManager specified in the configuration file.

getOP
double getOP()

Returns: Over-Provisioning - specified in the configuration file

getReserved
int getReserved()

Returns: number of blocks reserved for Over-Provisioning

getGCT
int getGCT()

Returns: Garbage Collection threshold, specified in the configuration file as percent, returned in blocks
number.

getChipsNum
int getChipsNum()

Returns: Number of Chips in the Device, specified in the configuration file.

getPlanesNum
int getPlanesNum()

Returns: Number of Planes in each Chip, specified in the configuration file.

getBlocksNum
int getBlocksNum()

Returns: Number of Blocks in each Plane, specified in the configuration file.

getPagesNum
int getPagesNum()

Returns: Number of Pages in each Block, specified in the configuration file.

17

17

getCleanColor
java.awt.Color getCleanColor()

Returns: Color of a clean Page.

getStatisticsGetters
java.lang.Iterable<StatisticsGetter> getStatisticsGetters()

Each use case manager initializes a list of statistics it would like to present.

Returns: Returns the statistics getters

writeLP
D writeLP(D device, int lp, int arg)

This method simulates the normal write procedure in SSD device. In order to change the basic writing
algorithm overload this method. This operation may invoke the GC as a side effect.

Parameters: device - - the device to write on, lp - -logical page to write

Returns: the new device after the write.

getWorkLoadGeneratorWidgets
java.util.List<ui.WorkloadWidget<D,SSDManager<P,B,T,C,D>>> getWorkLoadGeneratorWidgets()

Each use case SSDManager may have specific workload generators it is applicable to. This is the method to
overload in order to add workload generators of your liking.

Returns: List of Workload Generators applicable with current SSDManager.

6.2. StatisticsGetter - interface
General description

This interface represents statistics gathered by SSD manager. Every gathered statistics type in this
simulator implements this interface.

Method Details

getNumberOfColumns
int getNumberOfColumns()

The Graphs cannot dynamically change the number of columns or lines they are presenting. For that reason
the statistics getter must explicitly state number of gathered columns or lines.

Returns: number of gathered columns or lines

getStatistics
java.util.List<entities.StatisticsColumn> getStatistics(entities.Device<?,?,?,?> device)

This is the method in which the statistics getter calculates the statistics, for the current Device state.

Parameters: device - - to calculate the statistics on

Returns: list of statistics columns for the current Device's state.

getStatisticsGraph
ui.GeneralStatisticsGraph getStatisticsGraph()

Returns: the widget to present gathered statistics.

18

18

6.3. Page - Package entities, Extends java.lang.Object
General description

The smallest measure in SSDPlayer. It contains the basic info on the physical content of a page in
the simulator: isClean, isValid, isGC, logical page.

This entity is built using a Builder class (Builder design pattern). Builder is a nested class of the
Page and it allows to create a Page and validates that the initialization is correct. In order to extend
the Page entity you will have to extend the Builder class as well (see HotColdPage).

The Page is immutable, so any change to an existing page will create a copy of the page with this
change. This is done so it will be easy to save device state as a frame in a video.

Method Details

getBGColor
public abstract java.awt.Color getBGColor()

Returns: Background color of the page.

getSelfBuilder
public abstract Page.Builder getSelfBuilder()

Returns: a Builder initialized to create a copy of this page.

isClean
public boolean isClean()

Returns: whether the page is clean

isGC
public boolean isGC()

Returns: whether the page was written as Garbage Collection write (copied from erased block)

getLp
public int getLp()

Returns: the Address of the Logical Page written in this page (Identifier of LP).

isValid
public boolean isValid()

Returns: whether this page is valid.

getTitle
public java.lang.String getTitle()

Returns: Formats the string to display on this page (Usually just the LP Address).

getPageTexture
public java.awt.TexturePaint getPageTexture(java.awt.Color color)

Returns: Page texture (different textures may be displayed in the simulator).

6.4. Block <P> - Package entities, Extends java.lang.Object
Generic Type Parameters: P – Page type the block stores

General description
Block basically is ordered collection of pages, but this entity stores more information like
eraseCounter, block status, etc.

19

19

Block is also immutable and has a builder same as Page.

Method Details

getSelfBuilder
public abstract Block.Builder getSelfBuilder()

Returns: a Builder initialized to create a copy of this block.

getPages
public java.lang.Iterable<P> getPages()

Returns: iterable pages in this block, this is done in order to avoid changes in the collection outside the block,
we regard iterable as immutable.

getStatus
public entities.BlockStatus getStatus()

Returns: block status. BlockStatus is an interface which can be implemented in order to extend the number
of block statuses in specific use case.

getEraseCounter
public int getEraseCounter()

Returns: Erase Counter of this Block, the block is updating this field on a copy after erase.

getPage
public P getPage(int i)

Returns: Page in the index i. Throws IllegalArgument for invalid index.

isInGC
public boolean isInGC()

Returns: This is for visualization mode, it returns whether the block is moved by GC currently, in simulation
mode this happens in between frames.

getValidCounter
public int getValidCounter()

Returns: Number of valid Pages in the block, aggregated data.

getNewPagesList
public java.util.List<P> getNewPagesList()

Returns: New list of the same pages, this is a utility method for copying a block. A new list is created after an
edited page is inserted and an edited copy of the block can be produced by a Builder.

getCleanPageIndex
public int getCleanPageIndex()

Returns: Index of the next clean page in the block, returns -1 if none exists.

getBGColor
public java.awt.Color getBGColor()

Returns: Background color of the block.

getStatusName
public java.lang.String getStatusName()

Returns: Format of the block status string to be displayed. May contain status, counters, etc.

20

20

getStatusColor
public java.awt.Color getStatusColor()

Returns: get color of the written block status color. Used in order to mark some states.

invalidate
public Block<P> invalidate(int lp)

Parameters: lp - - Logical Page to be invalidated.

Returns: a new block in which the Logical Page given is invalidated, if doesn't contain the given LP returns
itself (this). Creates a copy.

eraseBlock
public Block<P> eraseBlock()

Returns: new clean block with updated erase counter. Creates a copy.

hasRoomForWrite
public boolean hasRoomForWrite()

Returns: whether the block has free page to write on.

setStatus
public Block<P> setStatus(entities.BlockStatus status)

Returns: whether the block has free page to write on.

21

21

7. Appendix: package UMLs

7.1. General

7.2. Breakpoints

22

22

7.3. Entities

23

23

7.3.1. Entities basic

24

24

7.3.2. Entities hot_cold

25

25

7.3.3. Entities RAID

26

26

7.3.4. Entities reusable

27

27

7.3.5. Entities reusable visualization

28

28

7.4. Manager

7.4.1. Manager HotColdStatistics

29

29

7.4.2. Manager RAIDStatistics

7.4.3. Manager SecondWriteStatistics

30

30

7.4.4. Manager SimulationStatistics

7.5. Message

31

31

7.6. UI

32

32

7.6.1. UI Zoom

7.6.2. UI Sampling

33

33

7.6.3. UI Breakpoints

34

34

7.7. Utils

7.8. Zoom

	1. Introduction
	1.1. SSDPlayer overview
	1.2. This Guide

	2. Design principles
	2.1. General
	2.2. Platform Independent
	2.3. Easily Extendible

	3. Creating an executable jar File
	4. Architecture
	4.1. Class Diagram
	4.2. Basic Workflow
	4.3. General Entities
	4.3.1. Adding a new FTL use case

	4.4. RAID Entities
	4.4.1. Adding a new RAID use case

	5. Features
	5.1. Statistics Getters
	5.1.1. Adding a Statistics Getter

	5.2. Trace Parsers
	5.2.1. Adding a File Trace Parser

	5.3. Workload Generators
	5.3.1. Adding a Workload Generator

	5.4. Breakpoints
	5.4.1. Adding a breakpoint

	5.5. Zoom Levels
	5.5.1. Existing zoom levels:
	5.5.2. Adding a new Zoom Level

	5.6. Info screen
	5.7. Error messages
	5.8. Trace Player
	5.9. Sampling rate
	5.10. CLI mode
	6. Important Classes
	6.1. SSDManager<P, B, T, C, D> - Package manager, Extends java.lang.Object
	General description
	 initializeManager
	 getManagerByName
	 getAllSimulationManagerNames
	 getAllVisualizationManagerNames
	 getAllVisualizationManagerNames
	 getTraceParser
	 getEmptyPage
	 getLpRange
	 getManagerName
	 getOP
	 getReserved
	 getGCT
	 getChipsNum
	 getPlanesNum
	 getBlocksNum
	 getPagesNum
	 getCleanColor
	 getStatisticsGetters
	 writeLP
	 getWorkLoadGeneratorWidgets

	6.2. StatisticsGetter - interface
	General description
	Method Details
	 getNumberOfColumns
	 getStatistics
	 getStatisticsGraph

	6.3. Page - Package entities, Extends java.lang.Object
	General description
	Method Details
	 getBGColor
	 getSelfBuilder
	 isClean
	 isGC
	 getLp
	 isValid
	 getTitle
	 getPageTexture

	6.4. Block <P> - Package entities, Extends java.lang.Object
	General description
	Method Details
	 getSelfBuilder
	 getPages
	 getStatus
	 getEraseCounter
	 getPage
	 isInGC
	 getValidCounter
	 getNewPagesList
	 getCleanPageIndex
	 getBGColor
	 getStatusName
	 getStatusColor
	 invalidate
	 eraseBlock
	 hasRoomForWrite
	 setStatus

	7. Appendix: package UMLs
	7.1. General
	7.2. Breakpoints
	7.3. Entities
	7.3.1. Entities basic
	7.3.2. Entities hot_cold
	7.3.3. Entities RAID
	7.3.4. Entities reusable
	7.3.5. Entities reusable visualization
	7.4. Manager
	7.4.1. Manager HotColdStatistics
	7.4.2. Manager RAIDStatistics
	7.4.3. Manager SecondWriteStatistics
	7.4.4. Manager SimulationStatistics
	7.5. Message
	7.6. UI
	7.6.1. UI Zoom
	7.6.2. UI Sampling
	7.6.3. UI Breakpoints
	7.7. Utils
	7.8. Zoom

